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1. Introduction 
In his recent books one of the main pre-occupations of Roger Penrose has been to show 
(to prove!) that computers are intrinsically limited, compared to humans, when it comes 
to the doing of mathematics. Even those who think that such things can be proved may be 
interested in the empirical question: what mathematics can computers do? Art Quaife's 
book addresses the aspect of doing mathematics that is reported in mathematical journals: 
proof of theorems. It shows us the extent to which this high exercise of rationality can 
currently be automated, and the extent to which it cannot.  
 
To me this book was fascinating. After reading it, I found myself turning over in my 
mind the question of the role played in theorem proving by understanding, a quality that 
Penrose regards as a prime desideratum of consciousness. I'll come back to that at the end 
of this review.  
 
Using the theorem prover OTTER Art Quaife has proved four hundred theorems of von 
Neumann-Bernays-Gödel set theory; twelve hundred theorems and definitions of 
elementary number theory; dozens of Euclidean geometry theorems; and Gödel's 
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incompleteness theorems. It is an impressive achievement. To gauge its significance and 
to see what prospects it offers one must look closely at the book and the proofs it 
presents. But first, some basics.  

2. Resolution theorem proving 
Mainstream automated theorem proving, to which Quaife's work belongs, is based on the 
method of resolution. To get an idea of it, three fundamental notions are needed: 
sentence, theorem and proof.  
 
Classical logic provides us with a notion of sentence that is completely formal. A person 
or computer can mechanically check whether or not a given string of words is a 
(grammatically correct) sentence. A typical sentence like:  
for_all x, for_all y, x*y=y*x  
may admit interpretation in various mathematical domains; this particular one happens to 
be true for multiplication of real numbers but not for multiplication of 2-by-2 matrices. 
The sentence  
for_all x, there_exists y, x*y=1  
is true if * is interpreted as addition of real numbers (and 1 as the number we call 'one', or 
even as the real number we call 'zero'), but it is not true if * is interpreted as 
multiplication of real numbers and (and 1 as the number we call 'one').  
 
A theorem has a bunch of sentences called its hypotheses, and a single sentence called its 
conclusion; what makes it a theorem is the existence of a proof that the conclusion 
follows from the hypotheses. A proof is a guarantee that under any interpretation in 
which the hypotheses are all true the conclusion must also true. While there are many 
methods of proof, resolution has the advantage of being more susceptible than most to 
machine implementation.  
 
Resolution is a method of proof by contradiction: to show the conclusion C follows from 
the hypotheses H1, H2, ... , Hn we say "suppose on the contrary that (in some 
interpretation) the hypotheses are true but the conclusion is not" and proceed to show, if 
we can, that the set of sentences {H1, H2, ... , Hn, not C} is contradictory. Our proof will 
succeed if we can find a sentence S such that both S and not S follow from the given 
sentences.  
 
What is required, then, to prove a theorem is to show that an associated set of sentences is 
unsatisfiable. In fact one may always construct the associated set so that its sentences 
have a particularly simple form: each sentence is a disjunction of literals -- a literal being 
an atomic sentence or the negation of an atomic sentence -- that is universally quantified 
over all its variables. Sentences of this simple form are called clauses; for brevity, it is 
normal in writing clauses, to omit the universal quantifier and to replace each or 
(connecting the literals) by a comma.  
 
For example the clause {not is_a_man(x), is_mortal(x)} is a formal abbreviation 
for the sentence "for every x, either x is not a man or x is mortal"; which is more familiar, 



perhaps, in the logically equivalent form "all men are mortal." Let us prove the famous 
theorem that has this and the clause {is_a_man(Socrates)} as its hypotheses and 
{is_mortal(Socrates)} as its conclusion. The method of resolution requires that a 
contradiction be derived from the set of three clauses:  
{{not is_a_man(x), is_mortal(x)}, 
{is_a_man(Socrates)}, 
{not is_mortal(Socrates)}} 
Using the first and the second of the clauses we may derive the new clause 
{is_mortal(Socrates)}. This is a very simple instance of what is called a resolution 
step; we will not go into detail here, but all that is involved is careful, elaborate, 
systematic matching and generation of patterns of symbols. Adding the new clause to our 
set, we now have:  
{{not is_a_man(x), is_mortal(x)}, 
 {is_a_man(Socrates)}, 
{not is_mortal(Socrates)}, 
{is_mortal(Socrates)}} 
and there, staring us in the face, is the contradiction we need. A resolution prover would 
perform a second resolution step, by convention deriving the null clause {} from the final 
two clauses above, and ending with  
{{not is_a_man(x), is_mortal(x)}, 
{is_a_man(Socrates)}, 
{}} 
It is the presence of the null clause that signals success -- a contradiction has been 
derived.  
 
This may seem a mindless way to prove the quintessential example of obviousness, but 
it's the way that the method of resolution works. One keeps adding new clauses to those 
already generated, sometimes (as in the second step of our example) deleting old ones. 
Resolution is the main way of generating new clauses but another kind of step, called 
factoring is also needed. Any other sound way of deriving new clauses may be used. If 
we succeed in deriving the empty clause we are done: the theorem is proved. What makes 
this worth trying is the fact that for any unsatisfiable set of clauses there exists a finite 
sequence of resolution and factoring steps that leads to a contradiction. We only need to 
find it.  
 
Quaife's book actually uses a more perspicuous Prolog-like notation in which A, B -> 
C, D stands for the clause {not A, not B, C, D}, and displays resolution proofs in 
familiar linear fashion, presenting each new clause that is generated with a brief 
explanation of its origin. For example, the argument above would appear in the form:  
1 is_a_man(x) -> is_mortal(x) 
2 -> is_a_man(Socrates) 
3 is_mortal(Socrates) -> 
4 -> is_mortal(Socrates) [resolution, 1, 2] 
5 -> [resolution, 3, 4]  

3. OTTER 



OTTER was developed at Argonne National Laboratory by William McCune (1990). It is 
based on work of Larry Wos, Ross Overbeek, Ewing Lusk and others (Lusk and 
Overbeek 1982, Wos et al. 1965, Wos et al. 1967, Boyer et al. 1986) that goes back over 
more than two decades and stems ultimately from the resolution algorithm of Alan 
Robinson (1963). OTTER is a state-of-the-art theorem prover incorporating many 
refinements of the basic resolution method (though at the time of publication it lacked 
associative-commutative unification). 
  
Theorem-proving, from this point of view, is like searching an immense, a mind-
bogglingly immense, maze. If the statement we are trying to prove is indeed a theorem -- 
and of course we are not supposed to know that it is - then among the many paths that 
lead from the set of clauses at hand to sets of derived clauses there will be some that lead 
to an exit -- a set that includes a null clause. If the statement happens not to be a theorem, 
then the maze has no exit. We accumulate clauses in the hope that they may play a role in 
filling in the path we seek. In the vast amount of information that is generated, most is 
dross. The problem is to control the derivation process in such a way that the null clause 
comes along before the information at hand becomes too large for any computer to 
handle. And this is to be done without semantic input, without understanding. The author 
quotes Henri Poincaré, with apparent approval:  
Thus be it understood, to demonstrate a theorem, it is neither necessary nor even 
advantageous to know what it means.  
It is an uncharacteristic sentence. When one tracks it down -- a non-trivial task, since like 
all of Quaife's many quotations it is unreferenced -- it can be seen that Poincaré was only 
paraphrasing sentiments of Hilbert with which he disagreed. The relevant passage is in 
Chapter 3 of Poincaré's Science and Method (1958, p. 147).  
 
In Quaife's work binary resolution is abandoned and sophisticated variants, 
hyperresolution and UR-resolution are used instead. As he puts it (p. 14) these "make 
larger inference steps in one fell swoop, without saving intermediate results to further 
clog up the clause space. They are effective steps in fighting the combinatorial 
explosion." In addition, reasoning about equality is done using paramodulation and 
demodulation. The latter brings in the powerful algebraic device of rewriting to normal 
form. A most important role is also played by two common-sense strategies: set-of-
support, which ensures that each conclusion drawn is relevant to the theorem at hand, and 
subsumption, which discards a derived clause if it is less general than some other derived 
clause.  
 
OTTER offers the user a substantial degree of control over the process of generating new 
clauses. In particular, each generated clause is assigned a weight that may be used to 
discard the clause (if its weight is large) or to give it preference in the drawing of further 
inferences (if it is small). More importantly, the program, like human mathematicians, 
can invoke previously proved results, however the choice of which theorems to prove 
first is up to the user of the program. 
  
The question must be asked: can proofs obtained with so much input from the human 
user be said to be automatic? The author calls them "semi-automatic" and, revealingly, he 



consistently refers to them in the possessive as "my proofs." Referring to the range of 
possibilities between a prover that merely verifies each minute step of an argument 
entirely presented to it by the user and one that presents a complete proof given only the 
statement of the theorem (including the axioms of the relevant theory), he makes a case 
that his development is a positive step in the direction of automation. He argues that 
whereas earlier resolution provers were successful only when relevant lemmas were 
supplied by the user, in his presentation all previously proved lemmas are freely 
available. There is therefore less human intervention.  
 
Art Quaife is optimistic that human intervention can be eliminated. Are there grounds for 
this optimism? In the case, for example, of number theory the order of proof of theorems 
and introduction of concepts is grounded in hundreds of years of human experience. Deep 
semantic insights of generations of creative mathematicians have been called upon. If 
there are ways of doing away with that, none are offered in this book. To quote Poincaré 
again (1958, p. 193):  
Logic remains barren unless it is fertilized by intuition.  

4. Set theory 
The first of the theories considered is von Neumann-Bernays-Gödel set theory. The 
author offers his own modifications of a published clausal version of Gödel's axioms and 
says (p. 26):  
Considerations of machine efficiency will be important in my conversion, and thus the 
clauses I supply do not result from a direct clausification of Gödel's axioms. Rather, I 
believe that with proper definitions they are provably equivalent to his.  
As elsewhere his honesty is to be commended, but in the context -- where accuracy is 
essential and subtle errors are easily made -- such ad hoc moves are worrying.  
 
Perhaps the main value of the book, to a non-expert reader, is the inside view of the 
actuality of resolution-based automated theorem proving that is offered by passages like 
the following, made in connection with the set theory material (p. 52):  
In my first attempt at a proof, I turn on UR-resolution, paramodulation into and from, and 
back demodulation. If these settings fail to obtain a proof within a reasonable length of 
time, I try turning on hyperresolution. I then also assign low weights to other functors 
that I expect must appear in the proof. This step is frequently necessary.  
The discipline of adhering to general inference rules must usually be departed from by 
bringing in theorem-specific weightings. A more radical departure lies in the choice of 
the many lemmas that proof of a major theorem usually requires. For example, in one of 
the culminating set-theory results presented in this section -- Cantor's theorem that there 
is no function mapping a set onto its power set -- the essence of the diagonal argument 
(the definition of the Cantor class and its membership conditions) must be provided by 
the user and proved as lemmas prior to the theorem itself.  

5. Number theory 



The book includes a very large number of theorems of elementary number theory that 
have been proved semi-automatically on the basis of Peano's axioms. It must be realized 
that the list includes such items as the definition (pp. 192-3)  
-> ((x+(y-x)) = max(x,y))  
(where y-x is defined to be 0 if y x) and the theorems  
-> (max(0,y) = y)  
and  
-> (max(x,x) = x).  
Fully-formalized arithmetic is broad as well as deep! The culminating results are two 
famous theorems of Euclid. The first is the irrationality of the square root of 2 (or indeed 
any prime number). The negation of the theorem is expressed in clausal form as (p. 81):  

 PRIME(p). 
 -> ((p.(a.a)) = (b.b)). 

 
(gcd(a,b) = 0) -> . 
What is actually proved is that a prime cannot be a ratio of squares of natural numbers; 
the reason, the author says, is that "I haven't yet developed the theory of fractions, let 
alone square roots." The proof takes only 25 lines. But it must be realized that the thirteen 
lemmas that were needed to produce it include such minor items as (p. 81)  
((u.(x.x)) = (y.y)) -> ((u.((x/gcd(x,y)).(x/gcd(x,y)))) = 
((y/gcd(x,y)).(y/gcd(x,y)))). 
and such major items as  
(gcd(x,y) = 1), DIV(x,(y.z)) -> DIV(x,z). 
While it is true that these lemmas are selected by the prover from among the four 
hundred-odd previously proved theorems, their particularity strongly suggests how vast a 
gulf must be bridged to fully automate the proof.  
 
The author speculates (p. 91) "that if a human has not proved the Goldbach conjecture 
within about forty years, the odds will shift in favor of a machine first finding the proof." 
Forty years is a good deal longer than the usual span for AI predictions, and if one will 
accept a proof with hundreds of lemmas, carefully chosen by the human user, following 
the research of human mathematicians, the prediction is not outlandish. A fully automatic 
proof would be a completely different matter. So far as we know the background needed 
for proving deep results in number theory goes far beyond what might be expected from 
the simplicity of the axioms and the theorem statements. There is no indication in this 
work that a resolution prover might in time automatically develop the theory of elliptic 
functions in response to a request for a proof of Fermat's last theorem.  

6. Euclidean geometry 
Euclidean geometry appears to be an ideal prospective domain for automatic proof. The 
pioneering work of Gelerntner (1963) (see also Gilmore 1970) served mainly to show 
that the appearance is deceptive. Axiomatic presentations of Euclidean geometry have not 
proved to be very amenable to automation. The development presented by Art Quaife 
confirms that observation.  
 
He uses a complete axiomatization, due to Alfred Tarski (1951), based on equidistance 
and betweenness as primitive relations on points. The most difficult of the theorems 



proved is that the diagonals of a rectangle bisect each other. The proof invokes 23 
previously proved results and takes 555 seconds on a VAX 8800 running ULTRIX 2.0. It 
seems like overkill for a theorem that holds for parallellograms in general, not just 
rectangles, and that basically comes down to the trivial vector implication  
B-A = C-D => 1/2(A+C)= 1/2(B+D).  
The idea that an algebraic approach might pay off is not mistaken. Quaife briefly 
mentions the work done by Shang-Ching Chou (1988) at the University of Texas during 
the nineteen-eighties. Chou implemented an algorithm of the eminent Chinese 
mathematician Wu Wen-Tsun (1986) and was able to efficiently generate fully automatic 
proofs of hundreds of theorems of Euclidean geometry, including theorems that humans 
find difficult to prove such as Simson's theorem. Lemmas are not required. The 
significance of this tour de force has not adequately been recognized. If runs on the board 
are what counts, it is the major achievement to date in automated theorem proving. It 
suggests the possibility that an entirely different approach to automatic reasoning -- in 
which deep, domain-specific, computational knowledge reduces the need to search, or 
does away with it entirely -- may pay off in areas other than geometry.  

7. Logic 
It is not surprising that the main successes of Quaife's prover and others like it have been 
in proving theorems of logic. Here if anywhere the method is suited to the matter. In the 
final chapter, semiautomatic proofs are offered of Löb's theorem and of Gödel's first and 
second incompleteness theorems. This is achieved within a formalization of the 
metatheory of the modal logic K4 -- it is not theorems in logic that are proved, but 
theorems about logical theorems -- with heavy use of demodulation. As with the other 
chapters there is a nice brief presentation of the relevant background. 
  
The final hundred pages or so of the book are devoted to an edited list of the theorems 
proved in NBG set theory and Peano arithmetic, material that should be useful to other 
workers in the area. For them the book may well be as valuable as its extraordinary price 
suggests.  

8. Conclusion 
Art Quaife writes clearly, honestly and with infectious enthusiasm. His interesting book 
is a compilation of research papers which retains the excitement and focus on detail that 
his creative use of OTTER engendered. I can't help liking a scholarly book that carries 
the ancient Greek or southern Californian dedication:  
To the pursuit and realization of unlimited pleasure.  
Perhaps the book is mis-named. It contains no automated development of theories. On the 
contrary the development of the theories that are presented is carried out entirely by the 
author, with a combination of skill, experience, trial and error and, above all, knowledge. 
Little explanation is offered of empirical facts that might play a role in the further 
automation of the proof process, such as that hyper-resolution is preferred to UR-



resolution (with the latter apparently mainly switched off) for the Tarski geometry 
whereas the reverse is the case for Peano arithmetic.  
 
Before sceptics will grant that what is going on here is truly automatic theorem proving it 
will be necessary to automate the control that currently must be exercised by the user of a 
resolution-based theorem prover. One may doubt whether that is feasible. Application of 
the cut rule, the rule of classical logic that allows the use of lemmas, is the main problem; 
it is here that knowledge is brought to bear which the program has no access to. To 
circumvent the problem, a different line of attack might pay off. 
  
The hard bits are easy and the easy bits are hard. That is a view that some AI people 
have. It means something like this: it's easy to prove Gödel's theorems but hard to 
recognize your mother. For a machine, that is. A look at mainstream automated theorem-
proving shows that matters are not so simple. The hard bits are hard too. The real work in 
proving a deep theorem lies in the development of the theory that it belongs to and its 
relationships to other theories, the design of definitions and axioms, the selection of good 
inference rules, and the recognition and proof of more basic theorems.  
 
Currently, no resolution-based program, when faced with the stark problem of proving a 
hard theorem, can do all this. That is not surprising. No person can either. Remarks about 
standing on the shoulders of giants are not just false modesty. Great theorems require 
great theories and theories do not, it seems, emerge from thin air. Their creation requires 
sweat, knowledge, imagination, genius, collaboration and time. As yet there is not much 
serious collaboration of machines with one another, and we are only just beginning to see 
real symbiosis between people and machines in the exercise of rationality.  

9. Afterword: the role of understanding 
Quaife's experience seems to confirm Penrose's beliefs concerning understanding. What 
the program OTTER lacks is understanding. It has no conception of which results are 
important, let alone which are interesting. It lacks the ability, surely a component of 
human approaches to proof, to reject purported theorems that are plainly false on 
semantic grounds (such as the use of symmetry or of diagrams in the case of geometry). 
Art Quaife seems not to feel a need for such ingredients, but others in automated theorem 
proving do. They face very difficult problems of implementation, especially if they abhor 
ad hoc methods.  
 
But that is not the end of the story, or even of the story so far. Think about Chou's 
program, nicknamed the China prover. It will certainly beat any mathematician who's not 
seen it before to finding a proof of a difficult geometry theorem such as Morley's theorem 
(which is the assertion that the trisectors of the angles of any triangle meet at the vertices 
of an equilateral triangle). Does the China Prover understand? Many would say no. A less 
glib answer might be: it understands enough to prove the theorems. The point is that a 
certain kind of understanding, admittedly quite different to the kind that you and I have, 
is embedded in the algorithm that the prover uses. Unlike OTTER's method, the 
algorithm has deep mathematical content. Humans, of course, are responsible for the 



algorithm and the associated theory and proofs of correctness. Most prominent among 
them is David Hilbert. That's a nice touch on the part of whoever is writing the script for 
all this. 
  
It would be easy, but a mistake on several grounds, to dismiss the success of the China 
Prover because it is in the quaint field of Euclidean geometry. For many centuries 
Euclidean geometry was regarded (rightly) as one of the peaks of human intellectual 
achievement, and it remains the geometry of the world in which robots and most people 
operate. Moreover, essential features of the geometry theorem proving algorithm do carry 
over to other domains. 
  
On the question of understanding there is one further point that is quite telling, I think. It 
was observed by Chou as he ran his prover that many long-accepted results of Euclidean 
geometry were in fact subtly incorrect. Humans tend not to notice tricky but common 
special cases in which geometry theorems break down. It is the mistake we observe in 
undergraduates who forget that x must not be zero when they divide by it. The China 
prover does not need to be given such degeneracy conditions: it actually generates them. 
Who understands better, then, man or machine?  

Notes 
A very brief version of this article appeared in the Australian Computer Journal, 
February 1995.  
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