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1. Penrose vs AI - Again 
1.1 Roger Penrose's new book, Shadows of the Mind, is strongly reminiscent of his 
previous work in the same vein, The Emperor's New Mind. This book restates the author's 
central line of argument about the place of consciousness in the material world. He has no 
sympathy at all for attempts to work out a computationalist theory of mind, and instead 
pins his hopes on a future theory that would allow large-scale quantum-mechanical 
effects in the brain to play a central role. 
 
1.2 A broad outline of his argument goes like this: 

• Because of Gödel's Incompleteness Theorem, mathematical insight cannot be 
mechanized.  

• Mathematical insight depends on consciousness, and so it is doubtful that any part 
of consciousness can be mechanized.  

• But then a physical system can be conscious only if it can't be simulated by a 
computer.  

• That would be very strange; fortunately, the world as imagined in modern physics 
is very strange.  
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• The interaction between quantum mechanics and the general theory of relativity is 
poorly understood. Fundamental questions about time and causality seem to 
depend on how that interaction gets worked out.  

• Perhaps the brain exploits some large-scale quantum coherence to achieve 
consciousness. Perhaps the site of this effect is in the cytoskeletons of neurons.  

1.3 This argument, when put down in black and white, seems extraordinarily weak. The 
least speculative step is the first, but that's also the easiest to show is fallacious, as I will 
do shortly. But before I do, I want to raise the question, Why is Penrose bothering? 

 
1.4 A clue might be this sentence on p. 373: "It is only the arrogance of our present age 
that leads so many to believe that we now know all the basic principles that can underlie 
all the subtleties of biological action." Penrose wants to do battle against the arrogance he 
perceives, especially in the AI community, regarding the problem of consciousness. It is 
true that AI has, from its inception, had the ambition to explain everything about the 
mind, including consciousness. But is this arrogance? Or merely the sincere adoption of a 
working hypothesis? If someone wants to work on the problem of mind, it seems to me 
that he must choose among three options: treat the brain as a computer, and study which 
parts compute what; study neurons, on the assumption that they might be doing 
something noncomputational; or work in a seemingly unrelated field, like physics, on the 
off chance that something relevant will turn up. In any case, no matter which tack is 
taken, one gets mighty few occasions to feel arrogant about one's success. Neuroscience 
and AI have made definite progress, and so has physics, for that matter, but their 
successes haven't resulted in a general theory of mind. If anything, AI seemed closer to 
such a theory thirty years ago than it seems now. 

 
1.5 So if someone wants to believe that AI will never explain the mind, he might as well. 
The burden of proof is on whoever claims it ultimately will. Penrose isn't satisfied with 
this state of affairs, however, and wants to exhibit a proof that a computationalist theory 
of mind is impossible. I suppose he sees himself fighting for the hearts and minds of 
neutral parties, who are in danger of being fooled into thinking that AI is on the verge of 
such a theory by the breathless stories they read in the papers. I don't know; perhaps an 
argument like Penrose's will, once it has been filtered through the distorting lens of the 
TV camera, be a sort of homeopathic antidote to those breathless stories. But, I regret to 
say, the argument would still be wrong. And so those of us in a position to point out the 
flaws in it must sheepishly rise to do so, in the full knowledge that AI can't win the 
debate if it degenerates into Mutual Assured Destruction ("You can't prove AI is 
possible," "Oh yeah? Well, you can't prove it's not"). 

2. Gödel's Theorem or Bust 
2.1 Penrose stakes everything on his analysis of Gödel's Theorem. This analysis is all 
wrong, but what's striking is how much he tries to hang on it. Penrose assumes that there 
is a single attribute called "consciousness" that accounts for insight, awareness, and free 



will. Hence, if he can show that computers lack a certain sort of insight, they must also 
lack all awareness and free will. (One wonders where this leaves five-year-old children.) 

 
2.2 In addition, all the plausibility of Penrose's theory of "quantum consciousness" in Part 
II of the book depends on the Gödel argument being sound. It certainly provides no 
plausibility by itself. There is a lot of material in the book about the mysteries of quantum 
mechanics. There is a much smaller amount about where in the brain quantum-
mechanical effects might be important. But if you seek an account of the link between 
these hypothetical effects and insight, awareness, and free will, there isn't any. This 
nontheory gets all of its oomph from the pathetic weakness of the computational 
alternative, as described in Part I of the book. The slightest flaw in Part I would knock 
most of the stuffing out of Part II. 

 
2.3 Part I is, in fact, full of flaws. The basic argument is straightforward and convincing: 
Suppose that all a mathematician's reasoning techniques could be embodied in an 
algorithm A that was believed to be sound. For technical reasons, assume that when A is 
given a problem of the form "Will algorithm C_q(n) stop?," where C_q is the algorithm 
with code q, and n is input data, A signals that the algorithm will not stop by stopping. 
Soundness means that when A(q,n) stops we are guaranteed that C_q(n) will not. There is 
some k such that C_k(n) is the computation A itself deciding whether C_n(n) will halt. If 
C_k(k) stops, then C_k(k) does not stop (because A is sound). Therefore C_k(k) does not 
stop, and we believe it doesn't stop, because we believe that A is sound. But A fails to 
draw this conclusion (i.e., it fails to signal the conclusion by stopping), so it is unable to 
conclude something that the mathematician (i.e., we) can conclude. Therefore A does not 
in fact coincide with the algorithm used by the mathematician. But the only feature of A 
that we assumed was soundness. Therefore (to quote Penrose, p. 76) "Human 
mathematicians are not using a knowably sound algorithm in order to ascertain 
mathematical truth." 

 
2.4 As I said, the argument is convincing. But it's also a bit anticlimactic, since no one in 
his right mind would suppose that that human mathematicians "use" (or embody) a sound 
algorithm, let alone a "knowably" sound one. To verify this point, you need merely to 
find a case where a mathematician made a mistake. Penrose acknowledges this problem, 
and devotes most of a chapter, Chapter 3, to trying fix it, by showing that in spite of 
appearances human mathematicians really are sound theorem provers. His attempts fail. 

3. Patching the Proof 
3.1 His first move (p. 98ff.) is to try to argue that it is reasonable to abstract away from an 
individual mathematician and talk about "mathematicians" as a team, all of whose 
members basically agree on mathematical truths. "Are mathematicians' judgements 
actually so subjective that they might disagree in principle as to whether a particular ... 
sentence has, or has not, been established as true?" The problem is the phrase "in 



principle." Of course, in principle all mathematicians agree, and all nations want world 
peace. But just the other day I received a flyer for a journal called the "Mathematical 
Intelligencer" that airs mathematical controversies. The flyer contained some choice 
quotes from a recent article by mathematician A about why B's published proof of some 
supposed theorem was inadequate, and promised a reply from B in a future issue. The 
quotes made it clear that A was not objecting to B's logical system, but to some claims B 
had made that certain lemmas were obvious. What would Penrose say about such a case? 
I suppose he would say that as long as a public controversy was going on, all claims 
involved should be placed in escrow. But what about cases where B gets away with his 
claims, and no A has the time or inclination to notice gaps? Isn't this the usual situation? 
Isn't B usually right (but not always)? In view of all this, it seems as though if there is a 
body of mathematical claims endorsed by the mathematical community, the current set of 
claims is always inconsistent. 
 
3.2 To take one famous example, cited by Ball and Coxeter (1939), in 1879 A.B. Kempe 
published a proof of the four-color theorem (Kempe 1879). According to Ball<1> and 
Coxeter, the bug in Kempe's proof was not disclosed until the publication of Heawood 
(1890). Hence for that eleven-year period the mathematical community was in a state of 
contradiction, and there is no reason to suppose any other period is immune. 
 
3.3 Human mathematicians do not generate an answer to a problem and then stop 
thinking about it. In fact, human mathematicians never stop, except for reasons irrelevant 
to the kind of in-principle argument we're doing here. Consider, for example, this passage 
from Kaplan and Montague (1960), concerning the Hangman Paradox: 
Before the appearance of Shaw's (1958) article, we had considered a form of the paradox 
essentially identical with his, and found it, contrary to his assertion, not to be paradoxical. 
At the same time we were successful in obtaining several versions which are indeed 
paradoxical. The present note is intended to report these observations. 
3.4 In other words, they started thinking about the problem, derived an analysis of it, 
found flaws in someone else's analysis, then kept analyzing. And the result of all their 
cogitation (to date, that is) is a paradox, an elusive inconsistency in some seemingly 
straightforward postulates! It is difficult to see how thinkers like these could even be 
remotely approximated by an inference system that chugs to a certifiably sound 
conclusion, prints it out, then turns itself off. 
 
3.5 For other examples, see (Lakatos 1976). 
 
3.6 Penrose tries to solve this problem by distinguishing between "individual mistakes---
or 'slips'" and "correctable" errors on the one hand, and "unassailable" conclusions on the 
other. He supposes that the unassailable conclusions are what we really care about, and 
that these must be the output of a sound reasoning system of some kind. "... We are not 
concerned with inidividual mistakes---or 'slips'---that a mathematician might happen to 
make while reasoning within a consistent overall scheme." (p. 138) Then we take as the 
output of our formal system the conclusions the computer takes to be unassailably true. 
The resulting system then must then suffer from the incompleteness described above. 



If our robot is to behave like a genuine mathematician, although it will still make 
mistakes from time to time, these mistakes will be correctable --- and correctable, in 
principle, according to its own internal criteria of 'unassailable truth.' ... If we are 
supposing that our robot is to be capable of attaining (or surpassing) the level of 
mathematical capability that a human being is in principle capable of achieving, then its 
concept of unassailable mathematical truth must also be something that cannot be 
attained by any set of mechanical rules that can in principle be perceived as sound .... We 
are to assume that the robot ... possesses a ... secure level of unassailable mathematical 
'belief,' so that some of its assertions---attested by some special imprimatur, which I 
denote here by a symbol 'STAR,' say---are to be unassailable, according to the robot's 
own criteria." (pp. 157--159)  
3.7 This move raises two obvious questions: What is meant by "unassailability"? and, 
What in human practice corresponds to tagging assertions with STAR? The answer to the 
second question might be "publication in a reputable journal." But of course errors do 
occur in even the most carefully refereed journals, as in the example described above. 
Perhaps unassailability is flagged by placing a statement in a journal and then not having 
it be corrected over some period of time, say a hundred years. But of course there are 
errors in journals that have gone undetected for more than a hundred years. 
 
3.8 Penrose is quite vague about what unassailability is. He comes close to endorsing the 
view that unassailability means provability. "Is it really plausible that our unassailable 
mathematical beliefs might rest on an unsound system...?" he asks rhetorically on p. 138, 
thus seeming to imply that unassailable beliefs rest on some kind of "system," or 
"scheme," as in the quote I cited above from the same page. But of course it can't be a 
formal system or scheme. That is, there can't be a formal mathematical theory such that 
everything unassailable is provable in that theory. That's what Gödel proved. So 
unassailability comes down to some kind of subjective feeling. On pages 138-141 he 
talks about the case of Frege's famous reaction to Russell's discovery of a paradox in his 
life's work, and seems to imply that mathematicians were sloppy then in ways we've 
learned to overcome. "Perhaps mathematicians have now become more cautious as to 
what they are prepared to regard as 'unassailably true'---after a period of excessive 
boldness (of which Frege's work indeed formed an important part) at the end of the 
nineteenth century." The way I read this is, if Frege had simply resolved not to be so 
reckless, he would never have been tempted to publish something that, deep down, he 
knew all along was not unassailable. I realize that I'm caricaturing Penrose's view, but it's 
awfully hard to get a precise reading about what he means. He wants unassailability to be 
both informal and guaranteed accurate, and I don't see how that's possible. 
 
3.9 In anticipation of these problems, in Section 3.2, p. 131, Penrose tries to defuse the 
idea that human mathematicians might be modeled by an unsound algorithm, by shifting 
gears substantially: 
...Unsoundness does not help at all for a known formal system F which ... is actually 
known---and thus believed---by any mathematician to underlie his or her mathematical 
understanding! For such a belief entails a (mistaken) belief in F's soundness. (It would be 
an unreasonable mathematical standpoint that allows for a disbelief in the very basis of its 
own unassailable belief system!). Whether or not F is actually sound, a belief that it is 



sound entails a belief that G(F) [essentially the sentence stating that C_k(k) doesn't halt] 
... is true, but since G(F) is now---by a belief in Gödel's theorem---believed to lie outside 
the scope of F, this contradicts the belief that F underlies all (relevant) mathematical 
understanding. 
3.10 This is really a different argument than the one we started with. The second one 
starts from different premises, and arrives at a different conclusion, namely that no entity 
can believe that any given algorithm can be responsible for its thought processes, because 
it would have to believe that the algorithm is sound, and then would reach a conclusion 
that that algorithm doesn't reach. The earlier conclusion was correct but unthreatening; 
the new conclusion is just false, for a clear reason: believing that a certain formal system 
underlies my reasoning processes does not entail belief that the formal system is sound. 
The problem is in the meaning of the phrase "formal system." What AI is interested in is 
not formal deductive systems whose theorems are exactly the "unassailable" 
mathematical conclusions, but in formal state-transition systems, that is, computers and 
programs. Confusion between these two concepts is so common that a brief digression on 
the topic may be worthwhile. 

4. Informality From Formal Systems 
4.1 Digital computers are formal systems, but the formal systems they are are almost 
always distinct from the formal (or informal) systems that their computations relate to. 
To analyze a digital computer as a formal system is merely to express its laws of 
operations in the form of transition rules among discrete states. When we take the inputs 
and outputs of the computer to refer to various real states of affairs, thenit need not be the 
case that there exists a consistent or sound formal system C such that whenever the 
computer concludes Q from P, the conclusion is licensed by C. Nothing prevents me from 
writing a program that, given any input P, prints out "P and not-P." There is, of course, a 
formal system S that stipulates that exactly this event is to occur, but this formal system 
is not about the entities mentioned in sentence P. If it's about anything, it's about the 
states of the computer, and nothing more. To make this point vivid, note that S, even 
though it prints out self-contradictory sentences, is "consistent," considered as a formal 
system, because it never says that the computer is to be in two distinct states at the same 
time. Consistency is essential to a formal system, because in almost all formal logics 
anything at all follows from a contradiction. Consistency is not, however, essential to 
computers. To continue my trivial example, I could take my self-contradictory program, 
and alter its behavior slightly, so that in response to "The earth is flat," it would say 
"False," and in response to "The earth is not flat," it would say "True," whereas in 
response to all other inputs P it continued to respond "P and not-P." Computers are not 
committed to inconsistency on all issues after revealing an inconsistency on one issue, 
any more than people are. 

 
4.2 Hence if someone were to show me a listing and claim it embodied me, I would have 
no reason at all to believe that its conclusions were always correct (quite the contrary!). 
So Penrose's second argument is just fallacious. He very much wants to believe that the 
existence of artificially intelligent mathematicians would entail the possibility of an all-



encompassing axiomatic mathematics ("the very basis of its own unassailable belief 
system"), but it just wouldn't. 

 
4.3 Hence this second argument (whose conclusion I'll call Nontheorem 1) is wrong, and 
the first, "Theorem 1," that human mathematicians don't use a sound formal system to do 
mathematics, is correct but harmless to AI research. It provides no evidence at all against 
the proposition that someday we'll have algorithms that are just as good, and just as 
fallible, as human mathematicians. 

5. Ensembles of Random Theorem Provers 
5.1 In addition to the basic bug in Penrose's argument, there are lots of little bugs, having 
to do with various technicalities, and I fear that unless these are discussed, the impression 
will be left that somehow by hard work Penrose has succeeded in revising his theorem to 
the point where it's actually relevant and true. 

 
5.2 Penrose raises the possibility that randomness plays a key role in humans' 
mathematical abilities, and that such randomness might account for the errors people 
make. "It would be reasonable to suppose that whenever the robot does make an error in 
one of its STAR-assertions, then this error can be attributed, at least in part, to some 
chance factors in its environment or its internal workings." (p. 169) So we would have to 
include a random input to our robot mathematician, and this would apparently vitiate the 
Gödelian argument. Not so, according to Penrose: The robot's "environment can also be 
provided as some kind of digital input," and if we can take as our computational entity 
the ensemble of all possible robot + environment combinations, then "there will be a 
finite number of ... possible alternatives" (p. 169). I am a little unsure of exactly what 
Penrose means by "alternatives," but I think he means possible A + environment pairs. 
"Thus, the entire ensemble of all possible robots ... will itself constitute a computational 
system.... One could see how to build a ....Turing machine ... that could carry out the 
simulation, even though it would be out of the question actually to carry it out" (still p. 
169). Now we can detect that a STAR-assertion is in error by letting the robots vote. 
Since errors in STAR-assertions are rare, random, and statistically independent, it will be 
essentially impossible for a majority of robots to be wrong, so the ensemble will serve as 
the A necessary to get the argument moving. 

 
5.3 There are two huge problems with this idea. The first is that it seems to assume that A 
is a distillation of a human mathematician that leaves out absolutely every human 
motivation or interest except mathematics, and even within mathematics leaves out 
everything except a single problem we've told it to work on. Hence if several copies of A 
are told to work on a problem, and are also given an "environment" to move around in 
(simulated, of course), then they will all generate outputs on about the same time scale 
and then stop. But what if it's the case that human mathematicians can't get far without 
collaborating with other human mathematicians? Won't the environment have to include 



them? What if A develops an interest in mathematics because of a beloved third-grade 
math teacher? We'll have to throw the teacher in, too. What if some A's become devotees 
of category theory, and others can't stand it? How will we cajole the second group into 
solving problems in category theory? 
 
5.4 It seems to me that we are led to the idea that the only way to implement A is to 
simulate billions of copies of the entire universe on a Turing machine, and hope that a 
significant number develop a community of mathematicians that find our problem 
interesting. Okay, we're talking "in principle" here, so I'll grant that. What I won't grant 
(and this is the other huge problem with the idea) is that this ensemble of universes 
implements a sound inference algorithm that we believe is sound (which is required for 
Theorem 1). The computation is dominated by a simulation of the physics of the world. 
It's not clear how we're even going to find the mathematicians, more of which can 
presumably evolve as the simulation progresses, let alone be sure that they obey our 
STAR convention. 
 
5.5 The situation is even worse with respect to Nontheorem 1, which requires us to 
postulate that the ensemble of universes hypothesizes itself to be a particular sound 
inference algorithm. Even if we grant, only for the sake of argument, that each element of 
the ensemble contains one or more pieces that hypothesize that they are sound inference 
algorithms, that doesn't mean the ensemble entertains this hypothesis or any other 
hypothesis. 

 
5.6 The sheer scope of the simulations required to run the argument bothers even 
Penrose. "The reader may still have the uneasy feeling that no matter how careful we 
have been, there may still be some erroneous ... STAR-assertions that could slip through 
the net.... Soundness requires that absolutely no erroneous STAR-assertions<2> are 
included.... This may still seem to us, and perhaps to the robots themselves, to fall short 
of certainty---if only for the reason that the number of possible such assertions is 
infinite." (p. 173) To circumvent this problem, he develops an argument in Section 3.20 
that only a finite number of STAR-assertions need to be considered. This argument is 
intricate, and seems at first to contradict the following elementary theorem of 
computability theory: For all c, there is a Turing machine that can deduce exactly the true 
mathematical statements of length c. The Turing machine merely contains a table of all 
theorems and nontheorems. Of course, this machine cannot actually be constructed 
without knowing which statements are theorems, which may serve as a warning about the 
exact status of existence claims in computability theory. 

 
5.7 As I said, Penrose's argument seems at first to contradict this fact about bounded-
length theorems. But his argument avoids this problem because it says that for any given 
putative theorem prover, there exists a bound c such that we can find a provable statement 
of that length or less that the prover can't prove. The argument is quite dense and hard to 
follow, and it seems to vacillate between trying to be a variant of Theorem 1 and trying to 
be a variant of Nontheorem 1. I think, though, that I can extract the essence of the 
argument, and possibly even strengthen Penrose's conclusion so that it applies to any of a 



certain class of probabilistic inference algorithms, not just the somewhat bogus ensemble 
of universes that I discussed above. I will put the argument in the style of Theorem 1, so 
that we don't have to use the dubious postulate that if an inference system entertains the 
hypothesis that it is implemented by a given algorithm, it must assume that the algorithm 
is sound. 

6. Random Ensembles and Gödel Gaps 
6.1 We start by assuming we have an algorithm Q that is T(c)-reliable, in the following 
sense: We give Q the problem of deciding whether computation q would halt on input d. 
I'll write Q(q,d) to refer to the running of algorithm Q on inputs q and d. Q is supposed to 
compute for a while, then print out Y if q would halt on d, else N. Suppose that for all 
problems such that size(q) + size(d) =< c, there is a time T(c) such that if the algorithm 
answers Y or N within this time, it is always right. To be concrete, we'll say that the 
algorithm is "T(c)-reliable" if, whenever it says Y or N before time T(c)/2, and then 
doesn't change its mind before time T(c), then what it says is actually true. Q is a 
probabilistic Turing machine, which means that it has access to an extra input tape 
containing an infinite sequence of completely random bits. With different input tapes, it 
might come to a conclusion about different <q,d> pairs, but it's never wrong about a pair 
it comes to a conclusion about. 

 
6.2 Penrose has in mind that his ensembles of computers are such a system, which he 
parameterizes with several parameters, not just the T(c) I am using. But I think the 
theorem works just as well for this somewhat broader class of inference algorithms. Let's 
use the term "short_c-theorems" for formulas of the form $halts(q,d)$ and $not 
halts(q,d)$, for which size(q) + size(c) =< c and Q(q,d) prints Y or N reliably within time 
T(c), as described. 

 
6.3 Here's what it would mean for the community of human mathematicians to be T(c)-
reliable in this sense: Suppose we give the mathematicians a problem, Does q halt for 
input d?, to work on, where size(q) + size(d) =< 100. After 500 years, if they don't have a 
solution, we just forget about this problem. Otherwise, they'll say Yes or No, so we give 
them another 500 years to try to find an error in their solution. If they stick by it after that 
time, we label it "proved." Let's suppose that no buggy solution survives this filtering 
process, and that, given 1000 years, the mathematical community would never let a 
buggy solution to a problem of size 100 remain STAR-flagged. And it might be the case 
that for all c, we could take T(c)=10c and the human mathematical community would 
never make a mistake about a size-c problem given 5c years to solve it and 5c years to 
check the solution. If you don't buy that, perhaps it will help to let T(c)=100^c, or take 
T(c) to be any other computable function whose algorithm has size O(log c), an easy 
requirement to satisfy. 

 
6.4 Now what Penrose does in essence is to define a derived computational system 



Q_c(a) that takes as input an algorithm description a, and runs Q(q,d) for all inputs q and 
d such that size(q) + size(d) =< c. It runs Q for only T(c) time units per <q,d> pair, and 
collects all the short_c-theorems. It then enumerates all deductive conseqences of these 
theorems (each of which is a formula of the form $halts(q,d)$ or $not halts(q,d)$). If $not 
halts(a,a)$ ever appears in this enumeration, then Q_c(a) stops. Otherwise, it goes on 
forever. Clearly Q_c is sound for all c, in the sense that if it halts for input a then machine 
a actually runs forever given a copy of itself. What we now show is that it has the usual 
blind spot. 

 
6.5 Penrose's key observation is that the size of Q_c, considered as an algorithm, grows 
only slowly with c. That's because c occurs in it only as a loop limit and as the argument 
to T(c), which itself (i.e., size(code(T))) grows only slowly with c. Hence it is easy to 
pick a c* such that 2.size(code(Q_c*)) =< c*. Define Q* to be Q_c* . If we let 
k=code(Q*), then consider what happens when we run Q* with argument k, a 
computation we call Q*(k). The conclusion $halts(k,k)$ or $not halts(k,k)$, if derived, 
will follow from a Q computation of size =< c* (because k+k =< c*), so if that 
conclusion is included in the short_c*-theorems it will be correct. Now if Q*(k) halts, 
then it says Q*(k) does not halt, so by soundness it must not halt, but Q* cannot infer it 
(the usual Gödel gap). Every short_c*-theorem of Q is a theorem of Q*, by construction, 
so Q does not give an answer on the input <k,k>. 

 
6.6 So far the argument is unproblematical (and quite ingenious), and shows that any 
T(c)-reliable algorithm must be incomplete. We can call this Theorem 2. The only trouble 
is that Penrose can't quite get from that conclusion to the one he wants, which is that the 
incompleteness occurs at a point where humans have no trouble drawing the correct 
conclusion. And at first blush this looks like such a case. Just take c* to be greater than 
the number of characters in the conclusion, and you have a short_{c*}-theorem for 
people that isn't a short_{c*}-theorem for Q. Unfortunately, that isn't quite as easy as it 
sounds. In the proof of Theorem 1, we were asked to picture a situation where we had a 
listing of an algorithm that was claimed to embody us. We were then given a theorem 
that the algorithm couldn't prove, except that we weren't really given it --- we were given 
a way of constructing it from the listing. Suppose that AI triumphs completely, and you 
hold in your hand a CD-ROM containing a listing of a computerized Gauss (call it G). 
Can you then apply the construction described above to derive a theorem that 
mathematicians find easy to prove and that G cannot prove? No, because G is not the Q 
we need to start the construction. To create Q, we would need to simulate lots of 
mathematicians (including a von Neumann and maybe even a Penrose as well as our 
Gauss), plus a large chunk of their environment. It's not at all clear that AI research 
would ever get to the point where it could take a stand on the existence or nature of Q. 
Furthermore, suppose that a candidate for Q were suggested. How would we evaluate it? 
In particular, how would we ever prove that it was T(c)-reliable? We would have to show 
somehow that no matter what random bits were input to the algorithm, it would never 
make a mistake. I conjecture that the possibility would always remain open that both the 
algorithm and the human mathematical community are not T(c)-reliable. Even worse, 
there's no way even in principle that we could determine that Q duplicated exactly the 



conditions prevailing in our universe. The best we could hope for is that Q be 
indistinguishable from our universe, that it apparently yield "typical" behaviors. But it 
could be the case that arbitarily small physical differences could change a T(c)-reliable 
universe into a non-T(c)-reliable one. 

7. The Infallibly Fallible Robot 
7.1 Penrose ends his treatment of Gödel's Theorem with the strange fantasy of Section 
3.23, in which a robot mathematician (MJC, for "Mathematically Justified Cybersystem") 
gets into an argument with its human creator (Albert Imperator, or AI). AI convinces 
MJC that if MJC and its fellow robot mathematicians even entertain the possibility that 
they embody any algorithm Q, then there is a sentence (which I'll call Omega(Q), 
simplifying Penrose's notation a bit) that is true but unprovable by MJC and its robotic 
colleagues if they are infallible. MJC sees the logic of this argument, and, refusing to 
abandon belief in its infallibility, goes insane. AI is forced to destroy MJC and all its 
fellows. 

 
7.2 This fantasy is incoherent at several levels. It seems to assume that infallibility is such 
an integral part of the AI research program that the robots can not even conceive of not 
possessing it. Yet MJC demonstrates spectacular fallibility in concluding at the end of the 
dialogue that its initials actually stand for Messiah Jesus Christ and that it is divinely 
guided to its mathematical conclusions. It seems to me that it would be much less 
traumatic for MJC just to say, "I guess we must very occasionally make mistakes; in fact, 
my impetuous assertion of infallibility was just such a mistake!" 
 
7.3 The dialogue has MJC hearing and agreeing with the argument for Omega(Q). "Yet 
.... it's impossible that [we] can accept Omega(Q), because, by its very nature of your 
Gödel's construction, is something that lies outside what can be STAR-asserted by us.... It 
must be the case that ... the procedures incorporated into Q are not after all the ones you 
used." (p. 183) Surely MJC has a pretty good case here. It is agreeing with the argument 
for Omega(Q); it even shows that it understands several implications of it. It sounds odd 
for AI and Penrose to continue to talk as if MJC really is unable to conclude Omega(Q). 
If MJC were to affix a STAR to Omega(Q), on what grounds would we quibble? 

 
7.4 Of course, in imagining MJC's possible behavior, I'm just coasting on the 
anthropomorphic fuel Penrose provides by painting such an extravagant picture of what 
MJC can do. And that brings me to what is really incoherent about this dialogue. It seems 
to knock the keystone out of Penrose's whole argument, which is that finding one tiny 
gap in the ability of robots to do mathematics would destroy any hope that they could 
ever really understand anything. If that's the case, then he would presumably believe that 
nothing like the dialogue between AI and MJC, in which the robot seems to understand 
every nuance of the conversation, could ever actually take place. The casual reader, who 
is urged by Penrose to skip all the hard stuff in Chapter 3, and go right to Section 3.23, is 
surely going to draw the conclusion that Penrose thinks that robots can do almost any 



task, except prove a certain theorem. He titles the section "Reductio ad absurdum--- a 
fantasy dialogue," and I suppose it could be taken as trying to show that no matter what 
powers of understanding we imagine we could give to robots, we will also have to 
imagine them having strange lapses (but strange lapses that are consistent with 
infallibility in some way), and that therefore we mustn't impute those powers. But it's as 
if I presented a proof that all toasters were useless by hypothesizing a talking toaster and 
showing that it must burn at least one slice of toast. 

8. What Does Penrose Think AI Is? 
8.1 Now that I've torn Penrose's argument to shreds, it's time for a spirited rebuttal of his 
critique of the computationalist theory of consciousness. Unfortunately, Penrose has no 
critique. Indeed, he says almost nothing about points of view different from his. The two 
and a half pages of Section 1.14, "Some Difficulties with the Computational Model," are 
almost all there is. There's a brief reference on p. 149 to what he supposes is the 
computationalist view of mathematical ability, a somewhat odd discussion of "top-down" 
vs. "bottom-up" programs in Section 1.5, and a few other remarks in passing throughout 
the book. One might conclude from this silence that AI has had nothing in particular to 
say about consciousness, but in fact there has been quite a bit of theorizing. In particular, 
between the publication of Penrose's previous volume and "Shadows of the Mind" 
appeared Daniel Dennett's "Consciousness Explained," which provides a rich set of ideas 
for thinking about computation and consciousness. I would have been quite interested in 
seeing Penrose's critique of that set of ideas. But there are (by my count) exactly two 
references to Dennett in "Shadows of the Mind," both in passing. 
 
8.2 Let me deal with his observations, what there is of them, in reverse order. Section 8.2, 
"Things that computers do well---or badly," distinguishes problems on which we would 
expect computers to do better than people from problems on which we would expect 
people to do better. The analysis is "a little crude," as Penrose admits, but basically 
correct. Suppose a problem can be analyzed as a search space with a branching factor of 
p. Then a computer might examine on the order of T=t.p^n search states if the solution is 
m moves away and it takes time t to explore a state. "It follows ... that games for which p 
is large, but can effectively be cut down significantly by the use of understanding and 
judgement, are relatively to the advantage of the human player." (p. 397) One might 
wonder what this has to with consciousness, but Penrose, as I said before, assumes that 
awareness and judgement are two manifestations of the same underlying property. "...The 
essential point is that the quality of human judgement, which is based on human 
understanding, is an essential thing that computers lack, and this is generally supported 
by the above remarks...." But nothing of the sort follows from the formula T=t.p^n. AI 
practitioners routinely think in terms of this formula when they look for heuristics to cut 
down p. Furthermore, there is no reason in principle why the computer needs to stay in 
one search space. The problem of finding the right search space can sometimes be 
phrased as a search problem itself. 
 
8.3 Finally we work our way back to Section 1.14, which is a review, at a sketchy and 



shallow level, of "difficulties" with the computational model. At the risk of stating the 
obvious several times, let me review these "difficulties." 
 
8.4 On p. 42, he says, 
....It is the mere 'carrying out' or enaction of appropriate algorithms that is supposed to 
evoke awareness. But what does this actually mean? Does 'enaction' mean that bits of 
physical material must be moved around in accordance with the successive operations of 
the algorithm? Suppose we imagine these successive operations to be written line by line 
in a massive book. Would the act of writing or printing these lines constitute 'enaction'? 
8.5 Presumably awareness will not be "evoked" by some computation; it will be 
constituted by some computation, and not just any computation. (See below.) And 
"enaction" does not mean recital of a sequence of operations; it means taking part in a 
certain interaction with the environment. It's as if someone objected: 
 
It is the mere 'carrying out' or enaction of appropriate switch transitions that is supposed 
to control a furnace. But what does this actually mean? Does 'enaction' means that bits of 
metal must be moved around in accordance with the successive operations of the 
thermostat? Suppose we imagine these successive switch transitions to be written line by 
line in a massive book. Would the act of writing or printing these lines constitute 
'enaction'? 
 
8.6 The same objection has been made, with slightly more subtlety, by John Searle 
(1992) and Hilary Putnam (1988). In each case it rests on a perverse identification of a 
computer program with a trace of its execution (a particular trace of a particular 
execution), which is simply absurd. 
 
8.7 "In any case," continues Penrose, 
it would presumably not be the case, according to [computationalism], that just any 
complicated algorithm could evoke ... awareness. It would be expected that some special 
features of the algorithm such as 'higher-level organization', or 'universality', or 'self-
reference', or 'algorithmic simplicity/complexity', or some such, would be needed before 
significant awareness could be considered to be evoked. Moreover, there is the sticky 
issue of what particular qualities of an algorithm would be supposed to be responsible for 
the various different 'qualia' that constitute our awareness. What kind of computation 
evokes the sensation 'red', for example? What computations constitute the sensations of 
'pain', 'sweetness', 'harmoniousness,' 'pungency', or whatever? Attempts have been 
sometimes been made by proponents of [computationalism] to address issues of this 
nature (cf. Dennett 1991, for example), but so far these attempts do not strike me as at all 
persuasive. (p. 42)  
8.8 It may be that Penrose finds the computationalist theory unpersuasive, and in a sense 
he's surely right. No one has a completely worked out theory of consciousness, Penrose 
least of all. But it would have been sporting of him to tell the reader what he takes the 
computationalist position to be before dismissing it. Since he didn't, I will. What follows 
is my interpretation of a theory due to Minsky (1968, 1986) and Dennett (1991). (See 
also Gelernter 1994.) I make no claim, however, that I am representing their views or the 
views of a majority of the AI community. 



9. The Computationalist Alternative 
9.1 The basic idea is that a computational system can often be said to have a model or 
theory of some part of its environment. I hesitate to use either the word "model" or 
"theory" here, because of the danger that some will assume I mean to use these words in 
the senses they have in mathematical logic, and I emphatically do not. Perhaps 
"simulacrum" is the right word; some computational systems maintain simulacra of some 
part of their surroundings. A simulacrum allows the system to explain and predict the 
behavior of the world around it. It's very important at the beginning of the exegesis to 
understand that when I use words like "explain" and "predict" I mean them in the least 
anthropomorphic way possible, as when one might say that an antiaircraft missile 
predicts the future locations of its target. 
 
9.2 Simple systems can get by with simple simulacra, but the more complex the 
organism, the broader must its skills be in relating one part of its environment to others, 
so that at some point it becomes legitimate to talk of the organism's simulacrum of the 
world. And at some point the organism must include itself in the model. This is not meant 
to be a mystical step. A computer taking an inventory of office furniture will include 
itself in its simulacrum. Of course, nowadays the computer will not distinguish itself 
from other workstations, or hat racks for that matter. But if the same computer is used to 
control the movements of the office furniture (using robotic sensors and effectors), then 
some interesting singularities arise. Some items of furniture will, as they are moved, give 
rise to moving patches of pixels in the images the computer's camera produces. But at 
least one item, the camera itself, will cause quite different sensory events when it is 
moved. The computer's world simulacrum must, to be accurate, reflect the asymmetry 
between these different kinds of physical objects. 
 
9.3 So far, no consciousness, and nothing out of the ordinary either. We have robots in 
our lab that watch their arms move toward targets, and they use different models for the 
arm and the target (Grunwald et al. 1994). The point where consciousness arises is where 
an agent requires a model of itself as a behaving agent, and even there consciousness 
does not depend on the agent having just any model of itself; it must have a model of 
itself as a being with free will, a transcendental ego, sensations with certain qualia, and so 
forth. This model is based on attributes that the being really does have. Free will is based 
on the fact that the computations the agent carries out really do influence its behavior. 
The transcendental ego is based on the fact that the agent must behave as a single entity. 
Qualia are based on the fact that sensory information really is processed. The model goes 
beyond the truth, but it's not really a lie; it's a self-fulfilling fiction. 
 
9.4 One pleasant (perhaps suspiciously pleasant) aspect of this theory is that it explains so 
nicely why the theory seems incredible. Our self-models deny that things like qualia are 
computational entities. Of course, they also deny that qualia have to do with large-scale 
quantum coherence, or any other physical phenomenon. That's why qualia seem so 
mysterious: any explanation of consciousness in terms of nonmysterious entities is ruled 
out as if by reflex. 



 
9.5 This theory has plenty of difficulties. To my mind, its biggest problem is that it raises 
a question that it has yet not answered, which is: How do we tell when a computational 
system X has a simulacrum of entity Y? The answer cannot depend on whether it's 
convenient for outside observers to impute this property to X. We have to start from an 
observerless universe and infer observers. But I don't think these problems are 
insurmountable, and they suggest some interesting lines of research. 
 
9.6 The theory also makes a prediction, which Penrose anticipates on page 42: 
"...Any clear-cut and reasonably simple algorithmic suggestion [for a theory of qualia] ... 
would suffer from the drawback that it could be implemented without great difficulty on 
a present-day electronic computer. Such an implementation would...have to evoke the 
actual experience of the intended [quale]. It would be hard ... to accept seriously that such 
a computation ... could actually experience mentality .... It would therefore appear to be 
the case that proponents of such suggestions must resort to the belief that it is the sheer 
complication of the computations ... that are involved in the activities of our own brains 
that allow us to have appreciable mental experiences. 
9.7 The first half of this paragraph is correct; the second half is wrong. It does seem to be 
the case that consciousness is no big deal. I believe I could program a computer to be 
conscious; it may have already been done by accident. The reason why it's so hard to 
detect is because computers are so stupid and clumsy. It's child's play to program a 
computer to perceive its own sense-event descriptors, but if it can't actually see anything 
interesting, and can't really carry on a conversation, then it won't have much to say about 
its introspections. Hence the bottleneck in getting computers to be conscious is getting 
them to be smart. Intelligence is a prerequisite for (recognizable) consciousness, not the 
other way around, as Penrose would have it. "Sheer complication" is a red herring. The 
cerebrum is conscious, and the cerebellum is not, because it uses a certain kind of model 
of itself, and the cerebellum doesn't. The kind of intelligence that I am talking about here 
is not what is measured by IQ tests, but a general ability to integrate information about 
the world. I'm quite sure that mammals have enough intelligence to be nontrivially 
conscious, and quite sure that existing computer programs do not. 

 
9.8 Curiously, the idea that consciousness will turn out to be quite simple is in harmony 
with Penrose's ideas. If we flip back to page 149, we find him expressing much the same 
conclusion in his framework: "[Understanding] need not be something so complicated 
that it is unknowable or incomprehensible.... Understanding has the appearance of being a 
simple and common-sense quality." 

 
9.9 This is not the only place where Penrose's views run parallel to the computationalist 
view. The second half of the book is taken up with the problem of the observer in 
quantum mechanics, the same problem he wrestled with in "The Emperor's New Mind." 
As I mentioned above, for computationalism the problem arises in finding an objective 
way to draw lines around systems that model themselves. In quantum mechanics the 
problem arises at a more fundamental level, when we try to find macroscopic objects in a 



world of wave functions. But it's likely a solution to the quantum-mechanical observer 
problem would shed light on the computational observer problem. 

 
9.10 To summarize: Computationalism is scarcely examined, let alone refuted, by this 
book, which stakes all its marbles on the Gödelian-gap argument, and loses. A 
computational theory of consciousness has many problems, but is better worked out than 
any alternative, including especially Penrose's. It is not arrogance, but a humble desire for 
truth, that leads some researchers to pursue the computational theory as a working 
hypothesis. The biggest obstacle to the success of this theory is not the absence of an 
account of conscious awareness per se, but the fact that AI has as yet made little progress 
on the problem of general intelligence, and has decided to focus on a more modest 
strategy of studying individual cognitive skills. The burden is on AI to show that this 
research program ever will lead to a theory of general intelligence. People like Penrose 
should declare victory and withdraw. 
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Notes 
<1> Roger Penrose is the Rouse Ball Professor of Mathematics at the University of 
Oxford. Same Ball. 

 
<2> Penrose actually has STAR_M-assertions here and in a couple of my later quotes. I 
don't think the distinction between these and STAR-assertions simpliciter is important for 
my discussion. 
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