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1. Penrose Redux 
1.1 In his book Shadows of the Mind [SOTM below], Roger Penrose has turned in 
another bravura performance, the kind we have come to expect ever since The Emperor's 
New Mind [ENM] appeared. In the service of advancing his deep convictions and daring 
conjectures about the nature of human thought and consciousness, Penrose has once more 
cut a wide swath through such topics as logic, computation, artificial intelligence, 
quantum physics and the neurophysiology of the brain. Moreover, along the way, without 
condescension, he has done a brilliant job of explaining difficult mathematical and 
scientific ideas in a broadly appealing fashion <1>. While the aims and a number of the 
topics in SOTM are the same as in ENM, the focus here is much more on the two axes 
Penrose grinds in earnest. Namely, in the first part of SOTM he argues anew and at great 
length against computational models of the mind and more specifically against any 
account of mathematical thought in computational terms. Then in the second part, he 
argues that there must be a scientific account of consciousness but that it will require a 
(still to be found) non-computational extension or modification of present-day quantum 
physics. 

 
1.2 I am only competent to say something substantive about the first part of the new 
effort, resting as it does to a considerable extent on a version of Gödel's (first) 
incompleteness theorem. Penrose had advanced that previously in ENM, but the line of 



argument was much criticized, as it had been in the past when advanced by others (e.g. 
J.R. Newman and E. Nagel, and J.R. Lucas) <2>. So now Penrose has gone to great 
lengths in SOTM to lay out his Gödelian argument and to try to defend it against all 
possible objections. I must say that even though I think Gödel's incompleteness theorems 
are among the most important of modern mathematical logic and raise fundamental 
questions about the nature of mathematical thought, and even though I am convinced of 
the extreme implausibility of a computational model of the mind, Penrose's Gödelian 
argument does nothing for me personally to bolster that point of view, and I suspect the 
same will be true in general of readers with similar convictions. On the other hand, I'm 
sure that those whose sympathies lie in the direction of a computational model of mind 
will find reasons to dismiss the Gödelian argument quickly on one ground or another 
without wading through its painful elaboration. If I'm right, this effort -- diligent as it is -- 
is largely wasted. Nevertheless, since Penrose has done it, I feel obliged to address at 
least the more technical aspects of his argument. 

 
1.3 While I have disavowed competence concerning Part II of SOTM, I can't help 
registering my impression that the effort there is entirely quixotic. What Penrose aims to 
do is substitute one "nothing but" theory for another: in place of "the conscious mind is 
nothing but the action of a computer" he wishes to have "the conscious mind is nothing 
but the manifestation of sub-atomic physics". Can we really ever expect a completely 
reductive theory of one sort or another of human cognition? Surely, no one theory will 
serve to "explain" the myriad aspects of this phenomenon. As with any other scientific 
study of human beings -- inside and out -- such an enterprise will need to continue to 
make use of psychology, psycho-physics, physiology (neuro- and otherwise), 
biochemistry, molecular biology, physics (macro- and micro-) and who knows what all 
else (including computational models of all kinds). In my opinion Penrose's "missing 
science of consciousness" is a mirage. 

2. The Logical Facts 
2.1 While Penrose's formulation of Gödel's theorem is by itself unexceptionable, his 
subsequent discussion of it -- especially in relation to Gödel's own formulation and 
various of its generalizations -- is unfortunately marred by a number of errors. I assume 
here some familiarity with mathematical logic and the relevant material from Kleene 
(1952); the reader who does not have that familiarity should skim the following before 
proceeding to the next section of this review. Unless otherwise indicated, pagination or 
section references (e.g. '2.5') are to SOTM. 
 
2.2 Penrose's form of Gödel's incompleteness theorem is stated in terms of Turing 
machine computations as follows (pp. 74-75): 
Theorem 1: Suppose A is a Turing machine which is such that whenever A halts on an 
input (q,n) then C_q(n) does not halt. Then for some k, C_k(k) does not halt, yet A does 
not halt on (k,k). In other words, if the halting of A is a sufficient condition for the non-
halting of Turing machines then it is not a necessary condition for that; still more briefly: 
soundness of A implies incompleteness of A. 



2.3 The proof of Theorem 1 is just a variant of the standard diagonal argument, 
originating with Turing in 1937, that the halting problem for Turing machines is not 
effectively decidable. As a form, though, of Gödel's incompleteness theorem, it is very 
close to Kleene's generalized form of that result, established in 1943 and exposited in 
Kleene (1952) p. 302 as Theorem XIII. That makes use of a very general notion of formal 
system F, the main condition for which is that the set of "provable formulas" is 
effectively enumerable. Suppose in particular that F contains effectively given "formulas" 
phi(q,n) which are supposed to "express" the predicate P(q,n) which holds just in case 
C_q(n) does not halt. F is said to be sound or correct for P if whenever F proves phi(q,n) 
then P(q,n) holds, and it is said to be complete for P if the converse is true. In slightly 
weakened form, Kleene's theorem (loc. cit.) is then as follows: 
Theorem 2: If F is a formal system (in the general sense) which is sound for the predicate 
P then it is not complete for it. In particular, there is a k such that C_k(k) does not halt 
though F does not prove phi(k,k). 
2.4 Assuming Church's Thesis, Theorem 2 follows Theorem 1, since every recursively 
enumerable set of pairs (q,n) is the same as the set of inputs on which a Turing machine 
halts. Conversely, to obtain Theorem 1 from Theorem 2, simply take the "formula" 
phi(q,n) to be the pair (q,n) and the set of "provable formulas" of F to be the set of pairs 
on which A halts. 
 
2.5 We must now examine the relationship of these results with the usual formulation of 
Gödel's incompleteness theorems. Here we deal with formal systems in the logical sense, 
i.e. systems F whose formulas are built up from basic arithmetical (and possibly other) 
relations by means of the propositional connectives and quantifiers and whose provable 
formulas are obtained from a given set of axioms (both logical and non-logical) by 
closing under certain rules of inference. Moreover, F is assumed to be effectively given, 
i.e. the set of axioms of F and its rules of inference are supposed to be effectively 
decidable, so that its set of provable formulas is effectively enumerable. Finally, F is 
supposed to be "sufficiently strong", i.e. contain a modicum F_0 of elementary number 
theory (or arithmetic). Over the years, the statement of Gödel's incompleteness theorems 
has been steadily strengthened by a steady weakening of what is assumed for F_0. In 
1931, Gödel had taken it to be a version of simple type theory over a number-theoretical 
base, but he soon weakened that to a form of the first-order system of Peano Arithmetic 
PA. Subsequently, for Gödel's first incompleteness theorem, this was further weakened 
considerably to R.M. Robinson's fragment Q of arithmetic, and for the second 
incompleteness theorem to the subsystem Sigma_1-IA of PA based on induction applied 
only to Sigma_1 formulas. For details, see Gödel's 1931 and related papers in the original 
and in translation, with an introductory note by Kleene, in Gödel (1986), pp. 126ff, and 
the expositions in Kleene (1952), pp. 204-213 and Smorynski (1977). For simplicity, we 
assume throughout the following that F_0 is PA, and that F is an (effectively given) 
formal system in the logical sense which contains PA. 
 
2.6 As Penrose notes, the class of PI_1 formulas is of special significance in connection 
with the Gödel theorems. These are ones of the form $forall(x) R(x)$, where R expresses 
an effectively decidable (recursive) property of the natural numbers and the intended 
range of 'x' is the set of natural numbers. Dual to this class is the class SIGMA_1 of 



formulas of the form $exists(x) S(x)$ where S is effectively decidable; in classical logic, 
these are equivalent to negations $not forall(x) not S(x)$ of PI_1 formulas. We may 
consider similarly PI_1 and SIGMA_1 formulas with free variables such as $forall(y) 
R(x,y)$ and $exists(y) S(x,y)$ with decidable R, S, resp. 
 
2.7 The following examples are particularly relevant to the Gödel theorems: 
 
(i) We have a decidable relation Proof_F(x,y) which expresses that y is (the Gödel 
number of) a proof in F of the formula (with number) x; then 
 
(ii) the SIGMA_1 formula Prov_F(x):=$exists(y) Proof_F(x,y)$ expresses that the 
formula (with number) x is provable in F, while the PI_1 formula $forall(y) not 
Proof_F(x,y)$ expresses that x is not provable in F; in particular, 
 
(iii) if c is the number of the formula $0=1$, the PI_1 formula Con(F) := $forall(y) not 
Proof_F(c,y)$ expresses that F is consistent. Next, (following Kleene), we have 
 
(iv) a decidable relation T(z,x,y) which expresses that y is (the number of) a terminating 
computation at input x on the Turing machine C_z; so 
 
(v) the SIGMA_1 formula $exists(y) T(z,x,y)$ expresses that C_z(x) halts, and 
 
(vi) the PI_1 formula $forall(y) not T(z,x,y)$ expresses that C_z(x) does not halt; in 
particular, 
 
(viii) for each k, the PI_1 sentence $forall(y) not T(k,k,y)$ expresses that C_k(k) does not 
halt. 
 
2.8 The system F is said to be sound for a class S of sentences if whenever F proves phi 
with phi in S then phi is true in the structure N of natural numbers; F is said to be 
complete for the sentences in S if the converse holds. F is said to be omega-consistent if 
there is no formula phi(x) such that F proves $not phi(n)$ for each natural number n, and 
yet F proves $exists(x) phi(x)$. It is said to be 1-consistent if this condition holds for 
decidable phi. It is obvious that if F is omega-consistent then it is 1-consistent, and that in 
turn implies that it is consistent, since an inconsistent system proves all formulas. Under 
our general assumption that F is sufficiently strong (i.e. contains PA as a subsystem), we 
have: 
Lemma 3: (i) F is complete for SIGMA_1 sentences. (ii) F is 1-consistent if and only if F 
is sound for SIGMA_1 sentences. (iii) F is consistent if and only if F is sound for PI_1 
sentences. 
2.9 The idea for the proof of (ii) is that if F is 1-consistent and proves $exists(x) S(x)$ 
where S is decidable then there must exist an n such that S(n) holds, since otherwise we 
could prove $not S(n)$ for each n. The converse is immediate by definition. The idea for 
the proof of (iii) is that if F is consistent and proves $forall(x) R(x)$ with R decidable, 
then for each n, F proves R(n), hence R(n) must be true, for otherwise $not R(n)$ would 
be provable in F as a special case of (i). 



 
2.10 The result (iii) of Lemma 3 is a fundamental observation due to Hilbert, since it 
shows that any success of his consistency program for a system F would establish the 
correctness of F for the "real" (i.e. PI_1) sentences. 
 
2.11 For his completeness results, Gödel constructed a PI_1 sentence G(F) equivalent (in 
PA) to $forall(y) not Proof_F(g,y)$, where g is the Gödel number of G(F). Thus G(F) 
provably expresses of itself (via its Gödel number) that it is not provable in F. 
Theorem 4. (Gödel's 1st incompleteness theorem). 
(i) If F is consistent then G(F) is not provable in F. 
(ii) If F is omega-consistent then $not G(F)$ is not provable in F.  
2.12 Now the hypothesis in (i) is equivalent by Lemma 3 to the soundness of F for PI_1 
sentences, and since under this hypothesis the sentence $forall(y) not Proof_F(g,y)$ is 
true and hence G(F) is true, we conclude from the first part of the 1st incompleteness 
theorem that: 
Corollary 5. If F is sound for PI_1 sentences then F is not complete for them.  
2.13 In this form, the first part of Gödel's 1st incompleteness theorem is of the same 
character as Theorem 1 (Turing-Penrose) as well as Theorem 2 (Kleene). Note that the 
hypothesis of the second part of Theorem 4 can be replaced immediately by the 
assumption that F is 1-consistent. For if $not G(F)$ is provable in F then so also is 
$exists(y) Proof_F(g,y)$. But that sentence is false by the first part of the theorem. Note 
also that if $not G(F)$ is added to F as an axiom, and F is consistent, the resulting system 
is still consistent (by the first part of Theorem 4) but not 1-consistent, hence not omega-
consistent. 
 
2.14 In 1937, Rosser constructed a PI_1 sentence R(F) which is such that if F is 
consistent neither R(F) nor $not R(F)$ is provable in F. However, R(F) is less useful than 
G(F), as the following shows: 
Theorem 6. (Gödel's 2nd incompleteness theorem). 
(i) PA proves $Con(F) -> G(F)$.  
(ii) Hence, if F is consistent then F does not prove Con(F), i.e. F does not prove its own 
consistency.  
2.15 The idea of a proof of $Con(F) -> G(F)$ in (i) is to formalize in PA the proof of the 
first part of the 1st incompleteness theorem. The converse, that $G(F) -> Con(F)$, is 
trivial, since if any sentence is not provable in F then 0=1 is not provable in F. 

3. Penrose's (Mis)treatment of the Logical Facts 
3.1 After this extensive, but, as we shall see, necessary excursus, we can finally return to 
Penrose's SOTM. 

 
3.2 pp. 74-75 (sec. 2.5). The idea of a computational procedure A being sound is 
explained here by the statement that if A halts on input (q,n) then C_q(n) does not halt. 
As we have seen, the conclusion is equivalent to the PI_1 sentence $forall(y) not 



T(q,n,y)$, and soundness of A is a special case of soundness of a formal system for PI_1 
sentences. However: 

 
3.3 pp. 90-92 (sec. 2.8). In Penrose's account of Gödel's incompleteness theorem, he says 
(p. 91) that if a formal system is sound then "it is certainly omega-consistent". This is a 
different notion of soundness from that on pp. 74-75, since omega-consistency is stronger 
than consistency, i.e. than soundness for PI_1 sentences. Penrose does not explain here 
what is meant by this new notion of soundness, but implicit in what he says is soundness 
for all (arithmetical) sentences [cf. the discussion of p. 112 below]. At any rate, the 
notion of soundness required for Penrose's further discussion is ambiguous between that 
of pp. 74-75 and that of p. 91. 

 
3.4 Next on p. 91, Penrose introduces the notation 'Omega(F)' for the [formal] assertion 
that the system F is omega-consistent. He says that "Gödel's famous incompleteness 
theorem tells us that Omega(F) is not a theorem of F... provided that F is actually omega-
consistent." As we have seen, Gödel's 2nd incompleteness theorem tells us that Con(F) is 
not a theorem of F provided F is simply consistent, a fortiori Omega(F) is not a theorem 
of F under the same conditions. The hypothesis of omega-consistency of F (or its 
weakening, 1-consistency) is needed only if we want also to conclude that $not Con(F)$ 
(or equivalently, $not G(F)$) is not a theorem of F. 

 
3.5 Penrose further says here that he will use the notation 'G(F)' for the [formal] assertion 
that F is consistent. He then says that Rosser's theorem tells us that if F is consistent then 
G(F) is not a theorem of F; but that is what Gödel's 2nd incompleteness theorem tells us, 
not Rosser's. Penrose further muddies the picture by saying that he will "not bother to 
draw a clear line between consistency and omega-consistency" in most of his discussions, 
but that "the version of the Gödel theorem that I [Penrose] have actually presented in 
section 2.5 is essentially the one that asserts that if F is omega-consistent, then it cannot 
be complete, being unable to assert Omega(F) as a theorem." Instead, as we have seen, 
what he showed in section 2.5 is a version of the first part of Gödel's incompleteness 
theorem, that if F is sound for PI_1 sentences [-> consistent] then G(F) is not a theorem 
of F. 

 
3.6 On p. 92, Penrose says that in order to discuss the actions of Turing machines, F must 
contain the minimum operator (mu) symbol. It is true that, in Kleene's normal form 
theorem, the value of C_q(n) is of the form U(mu y.T(q,n,y)) when $exists(y) T(q,n,y)$ 
holds; but the statement of halting or non-halting of C_q(n) does not require the explicit 
presence of mu among the symbols of F. 

 
3.7 p. 96. It is stated here that "...both Omega(F) and G(F) are PI_1 sentences." This is 
correct for G(F) but not for Omega(F) which is, instead, a sentence in PI_3 form, i.e. of 



the form $forall(x) exists(y) forall(z) R(x,y,z)$ with R decidable [work it out]. Even 1-
consistency is a PI_2 sentence, which is not equivalent to a PI_1 sentence. 

 
3.8 p. 108. Penrose says here that if F* and F** are obtained from F by adjoining G(F) 
and $not G(F)$ resp. as axioms, and if F is consistent then F* and F** are both 
consistent. This is correct for F** by ordinary logic, but not for F*. The following is a 
counter-example: let F be obtained from PA by adjoining $not G(PA)$ or, equivalently, 
$not Con(PA)$ as an axiom. Thus F is PA** in Penrose's notation, and so F is consistent. 
But in this case, since F* includes $Con(F)$ and PA is contained in F, we have that F* 
proves $Con(PA)$, so F* is inconsistent. What is needed to insure that F* is consistent is 
the assumption that F is 1-consistent (which is not the case for F=PA**); as it happens, it 
can be shown that if F is 1-consistent so also is F*. 

 
3.9 pp. 109-110. The discussion of the non-categoricity of the first-order version of PA of 
Peano's axioms vs. the categoricity of the second-order version of those axioms is 
misleading since it lumps together first-order quantification with second-order 
quantification. What the latter does is allow one to quantify over properties P in the 
induction axiom, namely as $forall(P) [P(0) and forall(x) (P(x) -> P(Sx)) -> forall(x) 
P(x)]$. However, Penrose is right in saying that for this second-order axiom to guarantee 
categoricity we need to regard it semantically, i.e. to interpret the variable 'P' in 'forall(P)' 
as ranging over arbitrary subsets of the first-order domain of interpretation, and there is 
no effective formal system complete for this semantics (by Gödel's incompleteness 
theorem). 
 
3.10 p. 112. In the discussion of Q18 it is asserted that we cannot "properly encapsulate 
'soundness' or 'truth' within any formal system -- as follows by a famous theorem of 
Tarski". This settles definitely the earlier ambiguity between the notions of soundness 
used on pp. 74-75 and that of p. 91, i.e. here soundness is taken as truth of all sentences 
(at least all arithmetical ones); then Tarski's theorem on the non-definability of truth 
certainly applies provided the system F under consideration is consistent. Penrose goes 
on to say that for restricted notions of soundness we can prove in F, or even PA, that if F 
is sound then G(F) holds. In particular, he says that PA proves $Con(F) -> G(F)$. This is 
strange, because on p. 91 he said that he will use 'G(F)' for the formal statement that F is 
consistent, i.e. for 'Con(F)': but for that identification the implication is trivial. The 
implication $Con(F) -> G(F)$ is only of interest if one takes G(F) to be Gödel's sentence 
that expresses of itself that it is not provable in F (cf. Theorem 6(i) above). The next 
strange statement on p. 112 is that one can prove that 'F omega-consistent' implies 
'Omega(F)', since on p. 91 Penrose defined Omega(F) to be the formal statement of the 
omega-consistency of F; on that identification the implication is once more trivial. 

 
3.11 p. 114: The description of my results on Turing's ordinal logics is incorrect. First of 
all, the reference given is to Feferman (1988), which contains a historical exposition of 
Turing's seminal work (1939) and subsequent work on this subject (under the new name, 
transfinite recursive progressions of formal systems). The appropriate reference for my 



own original work there should have been Feferman (1962). It was Turing (not me) who 
showed in his 1939 paper that the ordinal logic obtained by iteration of adjunction of 
consistency statements starting with PA and proceeding through the recursive ordinals is 
complete for PI_1 statements (in fact at a surprisingly low level); Turing had hoped to 
improve this to completeness for PI_2 sentences. In my 1962 paper I proved that: (i) 
Turing's ordinal logic is incomplete for PI_2 sentences; (ii) the same holds for 
progressions based on transfinite iteration of the so-called local reflection principle; but 
(iii) one obtains completeness for all arithmetical sentences in a progression based on the 
transfinite iteration of the so-called global or uniform reflection principle. However, the 
following comments by Penrose about the significance of Turing's and my work are 
correct: "...there is no algorithmic procedure that one can lay down beforehand which 
allows one to do this systematization for all recursive ordinals once and for all", and that 
"...repeated Gödelization...does not provide us with a mechanical procedure for 
establishing the truth of PI_1 sentences." 

 
3.12 I have not detailed all the occurrences of technical errors that Penrose makes in 
connection with Gödel's incompleteness theorems in Ch. 2, many of which also 
propagate through Ch. 3. Given the weight that Penrose attaches to his Gödelian 
argument, all these errors should give one pause. One has here lots more of the "slapdash 
scholarship" that Martin Davis complained about in his commentary on ENM (1993, 
p.116), and they suggest that Penrose may stretch that scholarship perilously thin in areas 
distant from his own expertise. The main question, though, is whether these errors 
undermine the conclusions that he wishes to draw from the Gödelian argument. I don't 
think that they do, at least not by themselves. That is, I think that the extended case 
Penrose makes from section 2.6 on through the end of Ch. 3 would be unaffected if he 
put the logical facts right; but the merits of that case itself are another matter. 

4. What Follows From Gödel's Incompleteness 
Theorem? 
4.1 Here I shall be less systematic in tracking Penrose. It must be emphasized again that 
what his case really rests on is the first half of Gödel's 1st incompleteness theorem 
(Theorem 4(i) above)-- that if a suitably strong formal system F is consistent then the 
PI_1 sentence G(F) is not provable in F -- combined with Hilbert's observation (Lemma 
3(iii) above) that F is consistent if and only if F is sound for PI_1 sentences. Finally, we 
have by Gödel's 2nd incompleteness theorem (Theorem 6 above) that G(F) is equivalent 
in a base system (e.g. PA) to Con(F). The omega-consistency of F and statement 
Omega(F) are simply red herrings for Penrose's argument and should be ignored. 
 
4.2 The reformulation of incompleteness in terms of Turing machines in section 2.5 is of 
course important if one is to argue that mathematical thought is not mechanical, but it is 
just a reformulation as Penrose brings out: every theorem-generating machine can be 
recast as a formal system and vice-versa. However, it is the model of mathematical 
thought in term of formal systems that is closer to the nature of that thought itself, i.e. to 
its concepts and modes of reasoning. What is misleading in the equivalence between 



Turing machines and formal systems is the way theorems are actually obtained in the 
working experience of mathematicians. On the algorithm model, one starts with an input 
(q,n) on machine A in an effort to establish that C_q(n) does not halt, i.e. one starts with 
the "statement" possibly to be established and plugs away mechanically following the 
algorithm that determines A in the hopes that it will end by "proving it". The analogue for 
a formal system F would be to start with a statement phi, possibly to be established, and 
mechanically generate, one after another, all proofs in F, looking to see if one of them 
ends with phi. But it would be ridiculous to think that anything like such a search through 
proofs takes place in the activity of working mathematicians. How it is that they actually 
arrive at proof is through a marvelous combination of heuristic reasoning, insight and 
inspiration (building, of course, on prior knowledge and experience) for which there are 
no general rules, though some patterns have been discerned by Polya and others: there is 
no formula for mathematical success. It is only when one finally arrives at a proof that 
one can check (mechanically, in principle, but not in practice) that it does indeed 
establish the theorem in question. 
 
4.3 So on the face of it, mathematical thought as it is actually produced is not mechanical; 
I agree with Penrose that in this respect, understanding is essential, and it is just this 
aspect of actual mathematical thought that machines cannot share with us. Beyond that, 
his entire drive is to nail down this conviction by showing that mathematical thought 
cannot even be re-represented in mechanical terms, as a result of the Gödel theorem. In 
my view, instead of increasing this conviction, this effort raises more questions than it 
answers and leads into dead-end dialectics. Here are some reasons. 
 
4.4 Penrose begins by stating as the main conclusion G from the Gödel-Turing 
incompleteness theorem: "Human mathematicians are not using a knowably sound 
algorithm in order to ascertain mathematical truth" (p. 76). More specifically, in terms of 
formal systems: if mathematicians can come to know that a system F is sound, then F 
cannot be used to ascertain the truth of the true PI_1 statement G(F). Now, as I have 
noted, there is an ambiguity in Penrose's use of the notion of soundness between that for 
PI_1 sentences and that for all sentences. All that the Gödel incompleteness theorem 
requires of F is the former, since that is equivalent to the consistency of F. But Penrose 
tends to emphasize the global notion of soundness and to tie it to his Platonistic 
philosophy of mathematics. The argument goes something as follows: how could we 
know that F is sound if we did not understand what F is about -- its intended 
interpretation -- and see that the axioms of F are all true of that interpretation and that its 
rules of inference all preserve truth? It is by such means, the argument continues, that we 
recognize the soundness of systems from PA all the way up to ZF set theory and beyond. 
And once we recognize the soundness of a system F and accept it as part of the principles 
on which we can rely, we see that G(F) is true and must accept it too, and so by Gödel's 
theorem, we are required to accept something that goes beyond F. 
 
4.5 Two problems with this argument are that (i) there may be other ways of recognizing 
the truth of G(F) than through a global notion of truth for F, and (ii) the assumption of an 
intended interpretation for set-theoretical formalisms is highly problematic. The first is 
what is achieved by proof theory. While it is generally agreed that Hilbert's program to 



establish the consistency of stronger and stronger formal systems by purely finitary 
proof-theoretical methods cannot be carried through as a result of Gödel's 2nd 
incompleteness theorem, a relativized form of Hilbert's program has been successful by 
these means (cf. Feferman (1988a)). Relativized proof theory yields verification of the 
consistency of a system F by reduction to the consistency of another system F', and 
progress is achieved thereby when one has more compelling reasons for accepting F' than 
F to begin with. In particular, various prima-facie non-constructive systems have been 
reduced in this way to constructive systems, and systems of analysis based on 
impredicative set-existence principles have been reduced to predicative systems. Indeed, 
it has been shown that the bulk of everyday mathematics can be formalized in such 
relatively weak systems, and it appears that all of scientifically applicable mathematics 
can be formalized in a system which is proof-theoretically reducible to PA (cf. Feferman 
(1993)). While mathematicians may conceive of what they are talking about in Platonistic 
set-theoretical terms, these results show that such a conception is not necessary to secure 
confidence in the body of mathematical practice. 
 
4.6 Moving on to the philosophical issues raised by Platonism in set theory, Penrose is 
right in identifying Gödel as one of the foremost proponents of this position. However, I 
think it is fair to say that he has few adherents among philosophers of mathematics. 
Admittedly, every overall philosophy of mathematics has its difficulties, but Penrose 
make it seem that the Platonistic position is a matter of common consensus. This is not 
the case for those who have given these questions more than token attention. While one 
may well agree that questions of truth in the natural numbers are of a determinate 
character, already the assumption of a supposed definite totality of arbitrary sets of 
natural numbers is highly problematic. Indeed, Gödel himself, at least for a period in the 
1930s, found this deeply troubling. In a previously unpublished lecture (*1933o in Gödel 
(1995)), he said that: "The result of the preceding discussion is that our axioms [for set 
theory], if interpreted as meaningful statements, necessarily presuppose a kind of 
Platonism, which cannot satisfy any critical mind and which does not even produce the 
conviction that they are consistent." (op.cit. p. 50). And Gödel continued to take proof-
theoretical approaches to consistency seriously throughout his life (see also *1938a in 
Gödel (1995) and the introductory notes to that and *1933o). Incidentally, on p. 116 of 
SOTM, Penrose says that Paul Cohen, in the last section of his 1966 book on the 
independence of AC and CH from ZF set theory "reveals himself to be, like Gödel [and 
Penrose] a true Platonist for whom matters of mathematical truth are absolute and not 
arbitrary." While that is a reasonable inference from what Cohen said there, shortly after 
that, at a 1967 conference, he stated: "By now it may have become obvious that I have 
chosen the Formalist [as opposed to the Platonic Realist] position for set theory" (Cohen 
1971, p. 13). As far as I know, that is still his view. 
 
4.7 Penrose reports in section 3.1 on what Gödel took the significance of his 
incompleteness theorems to be, via a quotation which had circulated some time back 
from Gödel's unpublished Gibbs lecture of 1951. That piece is now available in full as 
*1951 in Gödel (1995), with an illuminating introductory note by George Boolos. More 
cautious than Penrose, Gödel there comes to the conclusion that "either...the human mind 
(even within the realm of pure mathematics) infinitely surpasses the powers of any finite 



machine, or else there exist absolutely unsolvable diophantine problems." (op.cit., p. 
310). Boolos' discussion of this is tonic: 
"There is a gap between the proposition that no finite machine meeting certain weak 
conditions can print a certain formal sentence (which will depend on the machine) and 
the statement that if the human mind is a finite machine, there exist truths that cannot be 
established by any proof the human mind can conceive.... it is certainly not obvious what 
it means to say that the human mind, or even the mind of some one human being is a 
finite machine, e.g. a Turing machine. And to say that the mind (at least in its theorem-
proving aspect), or a mind, may be represented by a Turing machine is to leave entirely 
open just how it is so represented." (Boolos (1995) p. 293).  
4.8 The same applies mutatis mutandis to Penrose's Gödelian argument, and with that, 
enough said for now. 

Notes 
<1>. Take, as just one example, the vivid mini-"history" in SOTM, pp. 249-256, of the 
origins of probability theory and complex numbers in the work of the 16th century 
mathematician and physician, Gerolamo Cardano -- as a prelude to an explanation of 
Schroedingerian quantum mechanics. 

 
<2>. For earlier critical discussion, see the collection Anderson (1964). For criticism in 
various of the peer commentaries on ENM (with responses by Penrose), see Behavioral 
and Brain Sciences 13(1990): 643-705, 16 (1993): 611-622. 
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