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1. Gödel's Theorem And The Mind 
1.1 In the first part of Shadows of the Mind, Penrose gives an argument that human 
reasoning must go beyond what is computable. Therefore, no computer program can ever 
hope to be as intelligent as a human being. Penrose doesn't give a direct argument for his 
thesis. He doesn't for instance, show that there is some task that humans can perform 
which no computer can. (Although he suggests without offering a proof that certain kinds 
of geometric visualization may allow us to deduce facts in an inherently noncomputable 
way.) Instead, Penrose uses an indirect proof-he assumes that there exists a computer 
program that is every bit as intelligent as a human, and shows that that leads to a 
contradiction. 

2. Penrose's Argument 
2.1 The basic contradiction for Penrose is this: Assume that the reasoning powers of 
some mathematician, say Penrose himself, are completely described by some formal 
system F. What this means is that for every mathematical statement S in the language of 
F that Penrose finds to be "unassailably true", S is a theorem of F, and vice-versa. We 
will further assume that Penrose knows that F describes his reasoning. 

 
2.2 According to Penrose, the belief that F describes his own reasoning entails a belief in 
the soundness of F. (Penrose justifies this, saying "It would be an unreasonable 



mathematical standpoint that allows for a disbelief in the very basis of its own 
unassailable belief system.") 

 
2.3 By Gödel's theorem, since F is sound, then G(F), the Gödel statement for F, must be 
true, but not a theorem of F. Therefore, since Penrose believes that F is sound, he must 
conclude that G(F) is "unassailably true". So there is something (namely, G(F)) that 
Penrose finds unassailably true, but which is not a theorem of F. This contradicts the 
assumption that F completely describes the reasoning powers of Penrose (including his 
knowledge that F has this property.)  

3. Loose Ends 
3.1 This pretty much proves Penrose's conclusion, except for a few loose ends. First of 
all, there is a slight ambiguity in the meaning of F that needs to be addressed. One 
possible interpretation of F is that it represents the inherent reasoning ability of the 
mathematician. An alternative interpretation is that it represents a "snapshot" of the state 
of the mathematician's brain at one instant, and so includes both inherent reasoning 
ability and also empirical knowledge acquired during the mathematician's lifetime. A 
third possibility is that F represents the limits of what could ever be known by the 
mathematician, no matter whether through reasoning or through empirical knowledge. 
The differences among these alternatives become important when it comes to the 
question of whether the mathematician knows that his reasoning is described by F. It 
may, for instance, be that the mathematician learns the role of F through empirical means, 
and so this additional knowledge is not reflected in F. Penrose, in section 3.16 gets 
around this problem by considering a new system F', which includes F plus everything 
that follows from the information that the mathematician's reasoning powers were 
described by F (immediately prior to learning this knowledge). Then the same argument 
can go through using F' instead of F. 
 
3.2 Other loose ends: In order for Penrose's argument to go through, he needs to make the 
following assumptions about human mathematical reasoning: 

• Human mathematical reasoning is sound. That is, every statement that a 
competent human mathematician considers to be "unassailably true" actually is 
true.  

• The fact that human mathematical reasoning is sound is itself considered to be 
"unassailably true".  

3.3 So, the Gödel argument doesn't prove that human reasoning must be noncomputable - 
it only proves that if human reasoning is computable, then it must either be unsound, or it 
must be inherently impossible for us to know both what our own reasoning powers are 
and to also know that they are sound. Penrose dismisses the possibility that we know our 
reasoning powers but don't know that they are sound in the discussion in section 3.2 of 
Shadows. Penrose claims that if we knew that some particular computer program F was 



equivalent to human reasoning, then we would be forced to conclude that F was sound. 
But it is this point that I take issue with. 

 
3.4 To me, this is more a statement of psychology than of mathematics. Penrose 
considers certain of his beliefs about mathematics to be "unassailably true", and he 
cannot even consider the possibility that some of these beliefs might be wrong. Given 
that he holds this conviction, it doesn't follow that Penrose's reasoning is not computable, 
it only follows that Penrose can never be convinced that it is. For people (such as me) 
who have a more relaxed attitude towards the possibility that their reasoning might be 
unsound, Penrose's argument doesn't carry as much weight. 

 
3.5 In the next sections, I will discuss two additional questions which I think were not 
discussed adequately by Penrose: (1) Does the assumption that human reasoning is 
noncomputable save us from the Gödel-style paradoxes? (2) If our reasoning is 
inconsistent, then where could the inconsistency come from? How could a careful, 
intelligent mathematician make the sorts of mistakes that could lead to an inconsistency? 

4. Can Noncomputable Theories Escape Gödel's 
Theorem? 
4.1 Even among mathematical experts, there is a widespread misconception that Gödel's 
theorem only applies to computable theories. I believe that the reason for this belief is 
that Gödel's theorem fails to apply to the only well-known noncomputable theory, namely 
the complete theory of arithmetic. However, it is not difficult to show a stronger form of 
Gödel's incompleteness theorem: 
 
4.2 Given any theory (collection of statements close under logical deduction) T, the 
theory is either unsound or incomplete if the following conditions hold: 

• The formulas of T can be encoded as terms of T so that syntactic operations such 
as substitution can all be defined in T.  

• A "theoremhood" predicate is definable in T. That is, there is a formula P(x) 
expressing the proposition that x is a code for a theorem of T.  

4.3 To see that these conditions lead to the incompleteness of T, let us first define a 
substitution function. If A is some formula (possibly having free variables) in the 
language of T, and i is its code, then let sub(i,j) be the code of A', which is the result of 
substituting j for each free variable occurring in A. We have assumed that T is expressive 
enough to define such syntactic functions. Now define G_0 to be a formula expressing 
$not P(sub(x,x))$. (Strictly speaking, G_0 may not actually be $not P(sub(x,x))$, since 
there may be no symbol "sub" in the language. However, the definability of substitution 
implies that there is a formula expressing essentially the same meaning.) 



 
4.4 Let G be the formula constructed from G_0 by replacing all free variables by n, where 
n is the code for G_0. G thus expresses the statement $not P(sub(n,n))$. It is clear that G 
holds if and only if the term sub(n,n) is not the code of a theorem of T. But on the other 
hand, G is the result of substituting n for each free variable occurring in the statement 
(namely, G_0) whose code is n. Therefore, by definition of the substitution function, the 
code of G is sub(n,n). So G holds if and only if G is not a theorem of T. 

 
4.5 It is clear that if G were a theorem of T, then G would be false (since it "says" that it 
is not a theorem). Therefore, if G is a theorem, then T is unsound. Turning that around, it 
follows that if T is sound, then G is not a theorem (and therefore, true). So if T is sound, 
it must be incomplete (there is a true sentence, G, which is not a theorem.) 

 
4.6 With a few more mild conditions on the theoremhood predicate (due to the logician 
Lob), it is possible to prove a stronger statement: G is true (and unprovable) if and only if 
T is consistent. This is a much more useful result, since consistency is definable within T, 
while soundness is not. It follows that if T is consistent, then T cannot prove its 
consistency. 

 
4.7 So, the incompleteness theorem does not rely on a theory being axiomatizable; it only 
relies on the theory possessing a theoremhood predicate. In the case of computable 
theories (at least those extending Peano Arithmetic), a theoremhood predicate is always 
definable. However, for noncomputable theories, a theoremhood predicate may or may 
not be definable. In the case of true arithmetic, Tarski proved in effect that there is no 
theoremhood predicate. There is no formula P(x) in the language of arithmetic expressing 
the fact that x is a code for a true statement of arithmetic. However, there is such a 
formula in the language of set theory (ZFC). Therefore, the theory ZFC+, whose axioms 
are (1) all true statements of arithmetic, and (2) all axioms of ZFC is an example of a 
noncomputable theory that nevertheless has a theoremhood predicate. Gödel's theorem 
applies to this noncomputable theory, so there is a "Gödel statement" which is true but 
ZFC+ cannot prove it. Also, just like computability theories, ZFC+ cannot prove its own 
consistency. 

5. Does Gödel's Theorem Apply To Humans? 
5.1 Penrose's arguments depend on the ability of mathematicians to grasp certain 
"unassailable truths". While it may be the case that some truths are so difficult that they 
can never be considered unassailably true, it should be the case that nothing false can be 
unassailably true. However, it can be shown that, even though it might be the case that 
nothing false is ever judged to be unassailably true, this fact cannot be an unassailable 
truth. 



 
5.2 The "quick and dirty" way to show this is to use an explicitly self-referential 
sentence. Let G be the following sentence: 
This sentence is not an unassailable belief of Roger Penrose.  
If we suppose that G is one of Roger Penrose's unassailable truths, then we immediately 
conclude that it must be false. Therefore, Roger Penrose's unassailable beliefs include at 
least one false statement. Turning that around, if Roger Penrose's beliefs are sound (they 
do not include any false statements), then it must be that G cannot be one of his 
unassailable beliefs. But since G says that it is not one of his unassailable beliefs, it 
follows that G must be true. So, we conclude: 
If Roger Penrose is sound, then G is true.  
Now, since Roger Penrose is capable of seeing the truth of the above implication, it 
follows that if he believes himself sound, then he will believe G. But, by definition of G, 
if Penrose believes G (unassailably), then G must be false. So, if Roger Penrose believes 
he is sound, then G is false and yet Roger Penrose believes that it is true. Therefore, we 
conclude: 
If Roger Penrose believes he is sound, then he is, in fact, unsound.  
5.3 A slightly more mathematical argument uses definition paradoxes such as Richard's 
paradox ("The smallest number that can not be described in fewer than thirteen words.") 
Here is a related paradox: 
 
Let F(x) be a function from integers to integers defined as follows: 
Interpret the binary expansion of x as a sequence of bytes, or characters. If x 
unambiguously defines a total function G from integers to integers, then the value of F(x) 
is G(x) + 1. Otherwise, the value of F(x) is 0.  
Now, let N be the binary number coding the bytes in the above description and consider 
the expression F(N). To evaluate this expression, we need first to determine whether N 
codes an unambiguous definition of a total function. Well, N is just the definition of F, 
which at least appears to be well-defined. But then the definition of F would then require 
the value of F(N) to be F(N) + 1, which is impossible. This contradicts the assumption 
that F is a total function; it can't possibly be defined for N. However, if we know that N 
does not define a total function, then the above definition seems to give a definite result: 
F(N) is specified to be 0. 

 
5.4 The resulting paradox seems to me to show that the notion of "unambiguous 
definition" cannot itself be unambiguous. Similarly, the notion of "unassailable truth" 
cannot itself be unassailable. 

 
5.5 Such self-referential arguments may seem perhaps too "cute" to be believed. We 
know from the Liar paradox to be suspicious of explicitly self-referential sentences. 
However, we can eliminate the explicit self-reference and still reach the same conclusion. 
All that is necessary is the construction of a sentence G such that G holds if and only if it 
is not an unassailable truth. 



 
5.6 Since Penrose rejects the idea that human reasoning is beyond science, he seems to be 
committed to the belief that one day we might have a mathematical theory of how the 
human brain works. Therefore, using that mathematical theory, it will be possible 
(principle) to formulate a mathematical formula P(x) which holds only if an (idealized, 
error-free) human brain would find the statement coded by x to be "unassailably true". 
Whether or not P(x) is computable, we can use this formula to construct a "Gödel 
statement" for humans: a statement G which, if our reasoning is consistent, would be true 
but not believed to be "unassailably true" by us. Using Penrose's principle that we are 
forced to believe in our own soundness, it follows that we would be forced to conclude 
that G must be true. But this contradicts the definition of G as true but not believed to be 
true by us! 

 
5.7 The resulting contradiction shows that either Penrose is wrong, and we can't be 
unassailably convinced of our own soundness, or else Penrose is wrong, and the human 
brain can never be described by mathematics (and thus not by science, according to the 
current view of science). Therefore, if Penrose's arguments support any conclusion about 
the human mind, it would seem to me to support the position that the mind is forever 
beyond science (philosophical position D in the discussion of mind in section 1.3 of 
Shadows), rather than simply that it is beyond what is computable. There is nothing in 
Penrose's argument that couldn't just as well rule out any mathematical theory of the 
mind, not just computable theories. 

6. How Could Inconsistency Creep Into Human 
Reasoning? 
6.1 As I discussed in the last section, Penrose's arguments, if taken to their logical 
conclusion, show us not that the human mind is noncomputable, but that either the human 
mind is beyond all mathematics, or else we cannot be sure that it is consistent. If we 
reject the "mysterian" position that mind is beyond science, we are left with the 
conclusion that we can't know that we are consistent. This seems very counter-intuitive. 
If we are very careful, and only reason in justified steps, why can't we be certain that we 
are being consistent? 

 
6.2 Let me illustrate with a thought experiment. Suppose that an experimental subject is 
given two buttons, marked "yes" and "no", and is asked by the experimenter to push the 
appropriate button in response to a series of yes-no questions. What happens if the 
experimenter, on a lark, asks the question "Will you push the 'no' button?". It is clear that 
whatever answer the subject gives will be wrong. So, if the subject is committed to 
answering truthfully, then he can never hit the "no" button, even though "no" would be 
the correct answer. There is an intrinsic incompleteness in the subject's answers, in the 
sense that there are questions that he cannot truthfully answer. 



 
6.3 Now, there is no real paradox in this thought experiment. The subject knows that the 
answer to the experimenter's question is "no", but he cannot convey this knowledge. Thus 
there is a split between the public and private knowledge of the subject. But now, let's 
extend the thought experiment. 

 
6.4 Someday, as science marches on, we will understand the brain well enough that we 
can dispense with the "yes" and "no" buttons (which are susceptible to lying on the part 
of the subject). Instead of these buttons, we assume that the experimenter implants probes 
directly into the subject's brain, and we assume that these probes are capable of directly 
reading the beliefs of this subject. If the probes detect that the subject's brain is in the 
"yes" belief state, it flashes a light labeled "yes", and if it detects a "no" belief state, it 
flashes a light labeled "no". Now, in this improved experiment, the subject is asked the 
question "Will the 'no' light flash?" 

 
6.5 In this improved set-up, there is no possibility of the subject having knowledge that 
he can't convey; the probe immediately conveys any belief the subject has. If the subject 
believes the "no" light will flash, then the answer to the question would be "yes", and the 
subject's beliefs would be wrong. Therefore, if the subject's beliefs are sound then the 
answer to the question is "no". Therefore, since the subject cannot correctly believe the 
answer to be "no", he similarly cannot correctly believe that he is sound. If the subject 
reasons from the assumption of his own soundness, he is led into making an error. 
 
6.6 As can be seen from this thought experiment, the inability to be certain of one's own 
soundness is not a deficiency of intelligence. There is no way that the subject in the 
experiment can correctly answer the question by just "thinking harder" about it. 

7. How Can Inconsistency Creep Into Mathematics? 
7.1 Penrose in Shadows of the Mind was not concerned with beliefs in general, but only 
with beliefs about mathematics. In the pristine world of mathematics, is there a way to be 
careful, and make sure that our reasoning is consistent? It is understandable that if we 
start playing around with axioms we don't understand, such as the large - cardinal axioms 
of set theory, we might run into an inconsistency. However, suppose we stick to more 
concrete, understandable mathematics. For instance, Peano's theory of arithmetic. Surely, 
we can be certain that elementary arithmetic is consistent? Its axioms are only statements 
about plus and times which are obviously true to anyone who understands the simplest 
facts about numbers. 

 
7.2 Let's try to imagine a mathematician who is trying to figure out the limits of what the 
"unassailable truths" of arithmetic are. If the mathematician starts proving facts about 
arithmetic one at a time, using standard arithmetical methods (such as proof by induction) 
he can be pretty sure that he will never make a mistake. After a while, he might realize 



that everything he is doing can actually be automated - he can formalize the rules of 
arithmetic as axioms and rules of inference, and he could, in principle, write a computer 
program that could, given enough time, prove every possible theorem that can be 
obtained using those rules. Since the mathematician is confident that he set up the axioms 
correctly, he can, following Gödel, conclude that the resulting theory is consistent, so the 
Gödel statement for that theory is true but unprovable. 

 
7.3 The mathematician could then construct a second theory, which used as axioms all 
the axioms of the first theory, plus the Gödel statement for that first theory. This theory 
should be as sound as the first was. In a similar way, the mathematician could construct a 
third, more powerful theory, and a fourth, etc. All of them would seemingly be as sound 
as the first. 

 
7.4 Sooner or later, the mathematician might take a step back from his theory-building, 
and think: "You know, I think this process of building theories could itself be automated. 
I could build a new theory, I will call it the Omega theory, which will be the union of all 
theories that are obtainable by a finite number of steps in my original sequence of 
theories." 

 
7.5 Once the mathematician sets up the Omega theory, he can again use Gödel's theorem 
to get a theory more powerful than that, and another even more powerful. Eventually, he 
would get around to building a second Omega theory infinitely more powerful than the 
first Omega theory, and then a third Omega theory infinitely more powerful than the 
second. Then, the mathematician might get the idea of building an Omega-squared 
theory, which would be the union of all the Omega theories. He can go on forming more 
and more powerful theories, corresponding to bigger and bigger ordinals. 
 
7.6 Now, all of the mathematician's theories seem to only use the two obviously sound 
principles: A statement is considered to be "unassailably true" under the following 
circumstances: (1) It is a theorem of PA, or (2) It is a statement of the form G(T), where 
T is a theory consisting of only "unassailably true" facts. Surely, there is absolutely no 
way that an inconsistency could ever arise in the collection of "unassailably true" facts. 
So, why can't we conclude that the collection of unassailably true facts (those obtained 
using only these two rules of inference) is consistent? 

 
7.7 The problem is that in order to use Gödel's theorem to get ever more powerful 
mathematical theories, our mathematician needs to formalize more and more of his own 
reasoning, and then make the "leap" to the conclusion that that formalization is itself 
consistent (and therefore, the corresponding Gödel statement is true.) However, if the 
mathematician formalizes too much of his own reasoning, including the "leaps", then the 
resulting theory will be able to formalize itself, and make the leap to the conclusion that 
its own Gödel statement is true. But this conclusion leads immediately to a contradiction. 
 



7.8 So, either (1) the mathematician at some point stops short of formalizing all of his 
reasoning (in which case, the collection of all facts he can prove will be an axiomatizable 
theory), or else (2) he formalizes all of his reasoning, and the resulting theory is 
inconsistent (it would be able to prove its own consistency). 

8. Conclusion 
8.1 Penrose's arguments that our reasoning can't be formalized is in some sense correct. 
There is no way to formalize our own reasoning and be absolutely certain that the 
resulting theory is sound and consistent. However, this turns out not to be a limitation on 
what computers or formal systems can accomplish relative to humans. Instead, it is an 
intrinsic limitation in our abilities to reason about our own reasoning process. To the 
extent that we understand our own reasoning, we can't be certain that it is sound, and to 
the extent that we know we are sound, we don't understand our reasoning well enough to 
formalize it. This limitation is not due to lack of intelligence on our part, but is inherent 
in any reasoning system that is capable of reasoning about itself. 
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