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1. Introduction 
1.1 In these comments I want to leave aside entirely whether human mathematical 
understanding is achieved solely through the manipulation of linguistic symbols by 
syntactically specifiable rules, i.e. whether it is solely a matter of humans performing a 
computation. I also want to leave aside the problems that arise in interpreting quantum 
theory, in particular the measurement problem. Those problems stand on their own quite 
independent of Gödel's theorem. Rather, I want to focus explicitly on how Gödel's 
theorem, together with facts about human mathematical understanding, could 
conceivably have any bearing on physics, that is, on how the first part of Shadows of the 
Mind is related to the second. I want chiefly to argue the reflections arising from Gödel's 
theorem and human cognitive capacities do not, and could not, have any bearing on 
physics. 

 
1.2 That there might be any connection at all would be surprising for the following 
reason. Ultimately, the empirical data of physics resolve themselves into claims about the 
positions of material bodies. Any physical theory that correctly predicts or accounts for 
the positions of bodies -- including the positions of needles on complicated scientific 
instruments, the positions of ink particles on computer printouts, and the positions of dots 
on photographic plates -- cannot be objected to on empirical grounds. One might object 
on aesthetic or other grounds (e.g. one might object in principle to a theory that postulates 



unmediated action at a distance) but this would not be an empirical failure of the theory. 
So if Professor Penrose's argument somehow shows that classical physics or quantum 
physics cannot be complete and correct accounts of physical reality, then Gödel's theorem 
must somehow have implications about how material bodies can move. 

 
1.3 The overall strategy for connecting Gödel's result to physics would have to be to 
show that some actual motion of bodies cannot in principle be accommodated within a 
physical theory of a certain kind. Just as analysis can show that the physical behavior of 
planets whose orbits precess cannot be accounted for by Newtonian gravitational theory, 
so Penrose seems to claim that all of classical and quantum physics (as well as a large 
class of possible extensions or emendations of those theories) cannot account for the 
physical motions of some known physical bodies: those of human mathematicians. How, 
in detail, could this connection between a mathematical theorem and physical action 
possibly be made? 

2. The Strong Argument 
2.1 In several places, Penrose seems to want to supply an argument that would quite 
directly connect Gödel's theorem to the motion of physical bodies. Consider, for example, 
the claim on p. 14 that according to his view, view C, no "fully effective simulation of a 
conscious person could ever be achieved merely by a computer-controlled robot. Thus, 
according to C, the robot's actual lack of consciousness ought ultimately to reveal itself, 
after a sufficiently long interrogation". Since a Turing test of the sort that Penrose 
endorses as a criterion of consciousness can be carried out via teletype, this amounts to 
the claim that there is a particular set of physical motions, viz. the motions involved in 
depressing keys on a keyboard to type out "responses" to given input questions, which 
Penrose himself (or any competent conscious mathematician) could perform but which 
could not, in principle, reliably be performed by any computer. Let us call this argument, 
to the effect that no computer could reliably produce the visible outward motions of a 
conscious person, the Strong Argument. 

 
2.2 The Strong Argument has the logical form: such-and-such visible outward motions 
can reliably be performed by a person with human mathematical understanding but, as 
can be shown by appeal to Gödel's theorem, no computer can reliably produce such 
visible output given that input, ergo humans are not computers. Further, (and this is the 
important point for our purposes) the physics that gives rise to human behavior cannot 
even be simulated on a computer, else the simulation of a mathematician's brain run on a 
computer could give rise to the motions. Ergo that physics itself cannot be computable. 
 
2.3 The Strong Argument is clearly valid, but just as clearly unsound. For whatever 
Gödel's theorem shows, it cannot possibly show that no computer can reliably mimic 
Penrose's own behavior in a Turing test. Under the mild assumption that Penrose cannot 
understand or respond to a sentence in English that takes (say) 100 millennia to 
pronounce, the number of questions (and follow-up questions) that can be asked of him in 



a Turing test and to which he could intelligibly respond is strictly finite. So a computer 
could, in principle, be programmed to give completely "canned" responses to every 
possible set of Turing questions, which responses would match Penrose's own answers. 
There is no question of the computer understanding anything, or of simulating the 
underlying physics of Penrose's brain. The point is that the computer is certainly capable 
or producing exactly the same Turing test behavior that Penrose's brain, as a physical 
object, can. So the Strong Argument, directed at the outward behavior of mathematicians, 
cannot possibly be correct. 

 
2.4 There is rather compelling reason to think that Penrose means to make the Strong 
Argument. Beside the passage just cited, consider the following (my underline added): "I 
shall shortly be giving some very strong reasons for believing that effects of (certain 
kinds of) understanding cannot be simulated in any kinds of computational terms" (p. 
48); "Anyone who maintains that all the external manifestations of conscious thought can 
be properly computationally simulated... must find some way of coming to terms, in full 
detail, with the arguments that I shall give" (p. 49); "However, in the above discussion, it 
is not really necessary that the robot actually possess genuine mental qualities, provided 
that it is assumed possible for the robot to behave externally just as a human 
mathematician could...Thus, it is not necessary that the robot actually understand, 
perceive, or believe anything, provided that in its external pronouncements it behaves 
precisely as though it does possess these mental attributes" (p. 158); "The above 
arguments would seem to provide a powerful case against the computational model of the 
mind -- viewpoint A -- and equally against the possibility of an effective (but mindless) 
computational simulation of all the external manifestations of the activities of mind -- 
viewpoint B." (p. 202). Even more tellingly, the fictional dialogue in 3.23 features a 
computer which fails to act externally like a rational human. The dialogue which is 
supposed to illustrate the main point of Part I presents a computer failing to pass a Turing 
test. So it is plausible to assume that Penrose takes his arguments to show that no 
computer could pass a well designed Turing test. 

 
2.5 The great advantage of the Strong Argument is that it actually is an argument, and it 
has a conclusion which bears on physics. So the Strong Argument, if sound, bridges the 
gap between Part I and Part II of the book. The even greater disadvantage, as mentioned 
above, is that it is clearly unsound. To repeat: Penrose himself could certainly pass a well 
designed Turing test, and Penrose himself is capable of comprehending and meaningfully 
responding only to questions of a finite fixed length, so the very same responses can be 
programmed into a computer (we may take the whole Turing test inquiry up to a given 
point as the complete question being asked at that point). Such a program with canned 
responses will certainly be practically impossible (due to combinatorial explosion of the 
possible questions) but is just as clearly possible in principle. It could carry on a 
conversation with the interrogator not only longer than the computer in the fantasy 
dialogue, but for, say, 1000 (or 100 million) years. Surely Penrose is not claiming that he 
could do better than that. 



 
2.6 If it is Penrose's intent to establish the Strong Argument then we know that something 
has gone amiss, and the rest is just post mortem. 

3. Backing Off 
3.1 Given the ease with which the Strong Argument is defeated, it seems charitable to 
seek some other intent in the text, despite the passages cited above. And indeed, one can 
find indications that something less sweeping than the Strong Argument was aimed for. 
Let us consider some of the possibilities. 

 
3.2 The clearest indication that, despite all appearances to the contrary, Penrose does not 
mean to establish the impossibility of a computer passing a Turing test occurs in the 
response to Q7 on p. 82. There, an objector raises a similar point about canned responses, 
noting that a computer could be programmed to produce the same output of mathematical 
theorems as all of humankind to date and well into the future. (This is not the same kind 
of canned response I sketched above, since this is apparently just a matter of reciting 
theorems rather than producing the requisite banter.) Penrose's answer to this question is 
doubly puzzling. First, he asserts that the question "ignores the central issue, which is 
how we (or computers) know which mathematical statements are true and which are 
false" (p. 83). The questioner should be absolved of blame for missing this central issue, 
given the passages cited above. Penrose goes on to assert that "The arguments that I am 
trying to make here do not say that an effective simulation of the output of human 
conscious activity (here mathematics) is impossible[!] , since purely by chance[?] the 
computer might 'happen' to get it right -- even without any understanding whatsoever. 
But the odds against this are absurdly enormous...". The first part of this sentence is quite 
a shock, and the second part fairly hard to understand. The odds against the "canned" 
computer getting the output right are nil, even though the computer has no understanding 
of anything. But this passage does show that, at least at some points, Penrose explicitly 
denies trying to show that computers can't pass Turing tests, and so implicitly denies 
using the Strong Argument to make the connection from Gödel to physics. 

 
3.3 This leaves us with two problems. First, if the intent is not to show that computers 
can't produce some particular external behavior, what is it exactly that computers cannot 
do? Second, given that it is of central importance to the Strong Argument that the issue 
be one of external behavior, how is the connection to physics to be made? 

 
3.4 One weakening of the claim that computers can't pass a Turing test is found in the 
statement of position B on the question of computers and consciousness. Position B holds 
that "Awareness is a feature of the brain's physical action; and whereas any physical 
action can be simulated computationally, computational simulation cannot by itself evoke 
awareness" (p. 12) Note that position B concerns not the computational simulation of 
external behavior but the computational simulation of the physical action of the brain. 



This passage suggests that Penrose means to establish only that the internal physics of the 
brain cannot be computationally simulated, not that a computer couldn't pass a Turing 
test or couldn't simulate the external behavior of a conscious human. Let us call this 
conclusion the Weak Conclusion. The Weak Conclusion does, of course, imply Penrose's 
claims about the inadequacy of contemporary physics, but it does not imply that a 
computer would eventually be "unmasked" by a clever interrogator. 
 
3.5 The Weak Conclusion follows from the conclusion of the Strong Argument: if no 
computer can reliably produce the same output as a human brain, then no computer can 
simulate the physical action that gives rise to that output. The converse, or course, does 
not hold -- there is nothing absurd in the idea of a brain whose internal physical action 
cannot be computationally simulated but whose output can. Imagine, for example, the 
brain of a super-mathematician who is able to check whether every natural number is the 
sum of four squares by running through the entire set of natural numbers, checking each. 
No Turing machine can perform that feat, but it can arrive at the same answer ("yes") by 
other means. So Penrose needs an argument to the Weak Conclusion that does not give 
the Strong Conclusion (i.e. that no computer can reliably pass a Turing test), since the 
latter is indefensible. But there simply seems to be no way offered to the Weak 
Conclusion that does not go via the Strong one. External behavior is the only place where 
the motion of bodies, and hence physics, comes into play. 

 
3.6 If not via the Strong Argument, how exactly do considerations of physics get into the 
game at all? I believe it is by conflating the claim that human brains don't understand 
mathematics by virtue of doing computations with the claim that they don't do so by 
virtue of computable physical action. These claims should be kept clearly distinct. The 
planets, for example, don't perform any computations at all, they do not manipulate 
symbols. In particular, they do not orbit the Sun in virtue of performing computations. 
They do, however, orbit the Sun in virtue of computable physical action. From the fact 
that we cannot understand the activity of the planets by ascribing computational structure 
to them, it does not follow that their activity is not the result of (and understandable in 
terms of) computable physics. Similarly, if the appeal to Gödel's theorem works, it shows 
at best that reflecting on mathematics is not a matter of just manipulating symbols by 
means of valid syntactic rules. But what could that observation prove about the 
underlying physics of the brain? 

4. Simulating Brains 
4.1 Let's try to be as concrete as possible about the situation. Suppose that I am interested 
in Penrose's brain as a purely physical object. I am not concerned with whether, much 
less how, he thinks about mathematics, or indeed whether he thinks at all. I am simply 
concerned, in the first place, to describe his brain as a collection of particles assembled in 
a particular configuration. I do not describe him, for the purposes of my physics, as using 
any sort of an algorithm or formal procedure. Nor is there any reason that I can think of 
for believing that, on the basis of the physical description, one could derive an algorithm 



that he is using to solve mathematical questions. I just have a collection of particles in a 
given disposition. 

 
4.2 Thought of in this way, Penrose's brain is unimaginably complex. Modeling its 
behavior using quantum theory would be unspeakably complicated, though theoretically 
possible. It is also theoretically possible to use a digital computer to simulate the physical 
action of that brain according to the laws of quantum mechanics (together with, say, 
GRW collapses<1>). Such a simulation would produce simulated output behaviors given 
simulated input (and simulated boundary condition to, e.g., keep simulated nutrients 
coming to the simulated neurons). And if we simulate stimulating his auditory nerves 
with a mathematical query, the computer would eventually produce simulated output to 
the voice box, which we could algorithmically translate as the answer to our query. What 
reason is there to believe that the simulated output would not be qualitatively 
indistinguishable from Penrose's actual behavior? And given that we have nowhere 
suggested that Penrose is using an algorithm to arrive at the answer, where could Gödel's 
theorem begin to get a grip on this question? 

 
4.3 The only program around to which to apply Gödel's theorem is the program that 
simulates the action of Schroedinger's equation (and the GRW collapses) on the quantum 
state that describes Penrose's brain. But that program isn't even the kind of program that 
Gödel's theorem is concerned with -- it doesn't prove theorems or check whether a Turing 
machine ever stops! So how could that program be relevant to anything? 

 
4.4 We can, however, append to our program another which would result in a "theorem 
proving" computer. First, write a program that translates English sentences into the sort 
of auditory stimulation that one would receive if the sentence were spoken. Then write a 
program that constantly checks the output to the vocal cords for the words "Ah, I am 
unassailably convinced that the Turing machine you just asked about will not halt", or 
words to that effect. If such words appear, the computer prints "does not halt" and shuts 
down. So now we can input questions about particular Turing machines, run the 
simulation of the physics of Penrose's brain, and wait to see if we get a simulated 
response. And we now have a purely mechanical device that will offer opinions about 
Turing machines. Let us call the algorithm this machine uses P. 

 
4.5 Note first that this device will not, like the Mathematically Justified Cybersystem of 
the fantasy dialogue, claim to have some sort of superhuman mathematical ability. If it 
works as I claim it will, it will boast of no more mathematical ability than Penrose 
himself would. Indeed, perhaps it will refuse to say it is unassailably convinced of 
anything. In any case, it would be much easier for Penrose to write a fantasy dialogue 
with this robot -- he need only answer the questions as he himself would. 

 
4.6 So how do we apply Gödel's theorem to this brain-simulating algorithm? The 



conclusion that Penrose draws from Gödel's theorem is that human mathematicians are 
not using a knowably sound algorithm in order to ascertain mathematical truth. And this 
conclusion is certainly correct: since the soundness of an algorithm (or at least its 
consistency) is a mathematical fact, mathematicians who only believe the theorems 
proved by an algorithm will only believe that the algorithm is sound if it proves itself to 
be sound. But Gödel showed that any formal system that can prove its own consistency 
isn't consistent, and hence not sound, and a fortiori not knowably sound. But how can we 
apply this conclusion in the situation sketched? Even if we have the physics right, 
Penrose himself is not using P to determine anything, that is, Penrose is not getting 
answers by imagining or reasoning about or employing an algorithm that simulates his 
brain activity. Indeed, right now Penrose has no idea at all of what P is. So it is only in a 
Pickwickian sense that one could say that the success of P in simulating Penrose's brain 
implies that he is using any algorithm at all. And if the success of P does not imply that 
Penrose is using an algorithm, then the success of P cannot possibly conflict with the 
conclusion Penrose draws from Gödel's argument. 

 
4.7 But let's grant, for the sake of argument, this Pickwickian sense of "using an 
algorithm". If P is the algorithm that Penrose is "using", still, is it at all plausible that P is 
"knowably sound", and in particular, is it knowably sound by Penrose? 

 
4.8 Again, think concretely about the situation. Penrose is not presented with some 
relatively short method or program, but with a quantum description of every single 
particle in his brain, together with a mechanical method of deriving time evolutions of 
that state, and a translation mechanism for input and output. He could obviously not hold 
the whole program in his head, since it has more information in it than he has neurons (or 
cytoskeletons!). He could not even read the program in his lifetime. He could not 
possibly determine whether the mathematical opinions offered by this machine will even 
be consistent. The only way that Penrose could conclude that this program constitutes a 
sound algorithm is by accepting that it is an accurate description of his brain, accepting 
that the physics is accurately depicted, and inferring that since his own methods are 
sound, so is this program. But that is not being "knowably sound" in the sense that 
Gödel's theorem requires, since it is not a matter of establishing the soundness by any 
mathematical or formal considerations. This would rather be an empirical argument, and 
fall entirely outside the bounds of Gödel's concerns. There is, for example, no sense in 
asking of such an empirical method if it is sound, much less knowably sound. 

 
4.9 When Penrose discusses our resources for establishing the soundness of an algorithm 
(section 3.3), he addresses only the non-Pickwickian sense of "using an algorithm". That 
is, he discusses algorithms for manipulating symbols, whose axioms are translated as 
valid formulas and whose inference rules are recognizably sound (p. 133). But once we 
start thinking about directly modeling the physical action of the brain, rather than 
reducing the psychological processes of the thinker to manipulation of formal symbols, 
these resources for establishing the soundness of the process are lost. Our brain 
simulating algorithm doesn't have mathematical axioms: it has a description of the initial 



physical state of the brain. And the "rules of procedure" of the algorithm are not inference 
rules defined over sentences, they are rules for evolving that physical state forward in 
time. As soon as we switch from the idea of an algorithm that manipulates mathematical 
symbols to one that manipulates representations of physical states, it becomes 
inescapable that the soundness of the algorithm (in terms of the sentences it eventually 
produces) is necessarily beyond the grasp of the person whose brain is being modeled. 

5. The Final Escape Hatch 
5.1 Even if we accept that Gödel's theorem proves that Penrose is not using a knowably 
sound algorithm to decide mathematical questions, that at best only implies that the 
unimaginably complex computer simulation P cannot be known, by inspection, to be 
sound. And indeed, Penrose could certainly not determine whether the proffered program 
was sound or not. (Compare this with the way the computer in the fantasy dialogue easily 
"digests" its own algorithm (p. 181) -- it could not similarly digest a complete description 
of its physical state!) But perhaps we are being blinded by merely accidental and 
contingent limitations on Penrose's insight. Perhaps Penrose could not "see" the 
soundness of the algorithm in practice, but he could nonetheless do so in principle. 
 
5.2 The tricky qualifier "in principle" does appear at several junctures in the text. On p. 
65: "...no such system of rules can ever be sufficient to prove even those propositions of 
arithmetic whose truth is accessible, in principle, to human intuition and insight..."; on p. 
101: "For there certainly does appear to be a well-defined sense in which what is 
accessible in principle to one mathematician is the same....as what is accessible to another 
-- or, indeed, to any other thinking person"; and, in another context, on p. 48: "I shall 
maintain that a computer system's actual lack of general understanding should -- in 
principle, at least -- eventually reveal itself". Let us take the last of these first. 
 
5.3 If we follow out the strategy of the fantasy dialogue to "unmask" the computer 
simulating Penrose's brain action, then, just as the Mathematically Justified Cybersystem 
was fed its own algorithm, so will we feed the computer its algorithm. But if the 
computer is doing its job well, it will mimic Penrose's own response to this input -- 
namely by expiring (and simulating a corpse) long before the input could even be read. It 
is therefore unclear what "in principle" means here. If it means that the questioning 
should be allowed to go on forever, with questions of unbounded complexity, with every 
question being answered, then the demand is completely unjustified. Penrose couldn't 
pass such a test -- so why should a computer simulating his brain action do better? 
Further, this whole line of argument only makes sense in the context of the Strong 
Argument, which we have long ago rejected. So this last "in principle" is of no help. 
 
5.4 The other two "in principles" cited above look more promising. If the algorithm 
simulating Penrose's brain action is sound, and if he can become unassailably convinced 
it is sound, then there is a Gödel sentence for it which he can be unassailably convinced is 
true. But to become unassailably convinced that the algorithm is sound, he must analyze 
the algorithm and prove by uncontroversial mathematical methods that it is sound. And it 
certainly does seem impossible for Penrose, as he is, to ever prove the soundness of that 



algorithm mathematically. But perhaps it is not impossible for someone to prove the 
soundness of the algorithm. And if Penrose can, in principle, know what anyone else can 
know, then he can, in principle, know the soundness of the algorithm. 
 
5.5 If this argument has the air of a conjuring trick, that is because it is one. Penrose 
cannot prove the soundness of P, in part, because it has more lines of code than he has 
particles in his brain. If someone else (with a stupendously larger brain) could, somehow, 
inspect the algorithm and prove its soundness, it still doesn't follow that Penrose could. 
Perhaps Penrose could if his brain were bigger, but this leads to two problems. First, we 
don't know by what principle we are to enlarge his brain, as a physical object. Where do 
we add more neurons or cytoskeletons, and in what pattern? But worse than this, if we do 
enlarge his brain (as a physical object) then the original algorithm is no longer relevant -- 
it is not a simulation of the physics of his brain. There will be a new algorithm simulating 
the physical action of the new brain, an algorithm whose soundness will be beyond the 
new brain to prove. No progress has been made. 
 
5.6 It is just here that the fundamental confusion in the argument of the book again rears 
its head. If we are concerned with the idea that mathematicians are using algorithms to 
come to mathematical conclusions, then several inferences are quite reasonable. One is 
that the algorithms are not terribly diverse or complex: after all, human abilities to follow 
out complex rules are limited. Another is that we can meaningfully discuss what such an 
algorithm could output in principle, i.e. if run on a Turing machine with infinite memory 
for an infinite time. And a third is that the discussion will be little altered if we discuss a 
community of mathematicians: the total number of algorithms being used will probably 
not much increase, and if we insist on allowing only algorithms that all of the members of 
the community endorse, then the number may well decrease. The idea of writing down 
the relevant algorithm and inspecting it does not seem absurd. 
 
5.7 But if we are instead concerned with modeling the physical action of the 
mathematicians using computable dynamical equations, all of these inferences become 
invalid. The "algorithm" will be incomprehensibly complex. The only clear sense of what 
one person could do in principle is given by letting the program run on -- ending in their 
simulated death. And most importantly, the modeling of a community of mathematicians 
is necessarily orders of magnitude more complex than modeling just one. For the physics 
of a dozen brains is at least a dozen times more complex than the physics of one. So if we 
bring in some comrades to help Penrose out in proving the soundness of his (personal) 
algorithm, we change the problem. Modeling the physical behavior of Penrose's brain 
when he is conversing with his colleagues will require modeling the physics of their 
brains, and so engender a more complex algorithm. Similarly if he draws on the aid of 
computers, or even the lowly pencil and paper. All of the objects that play a physical role 
in the process that leads him to a conclusion must be modeled in the algorithm. 
 
5.8 This fundamental fracture in Shadows of the Mind, the fracture that separates Part I 
from Part II and cannot be mended, is papered over by the single word "computational". 
Consider the following passage: 



Of course, none of this will stop us from wanting to know what it is that is really going 
on in consciousness and intelligence. I want to know too. Basically, the arguments of this 
book are making the point that what is not going on is solely a great deal of 
computational activity -- as is commonly believed these days -- and what is going on will 
have no chance of being properly understood until we have a much more profound 
appreciation of the very nature of time, space, and the laws that govern them. (p. 395)  
5.9 The conclusion of Part I is that mathematical understanding is not just a matter of 
using knowably sound algorithms. In that sense, there is more than a great deal of 
computational activity in the brain. But it simply does not follow that the physical action 
of the brain is not governed by dynamics that can be simulated on a computer. Certainly 
all possible computational activity -- all following of algorithms -- can be achieved in 
systems governed by computable physics. But it is simply affirming the consequent to 
conclude that all action in systems governed by computable physics is computational 
activity. This fallacy is masked by use of the same term, "computational activity", to 
denote doing a computation and doing something that can be simulated on a computer. 
Disambiguate the two meanings and the halves of the book fall neatly apart. 

6. Collapse 
6.1 Having argued that the conclusions of Part I cannot possibly have a bearing on the 
questions raised in Part II, I would like to end by simply registering my views of those 
two parts taken separately. As mentioned above, the conclusion G on p. 76 is certainly 
correct: Human mathematicians are not using a knowably sound algorithm in order to 
ascertain mathematical truth. I also agree that mathematical understanding, and indeed 
consciousness in general, is not simply a matter of doing computations or having a 
certain computational structure or being a Turing machine of a specified sort that is 
performing a computation. I have argued for this conclusion, on completely independent 
grounds, elsewhere (Maudlin, 1989). 

 
6.2 On the physics side, there certainly are foundational problems in the quantum theory 
and seemingly intractable problems reconciling quantum theory with Relativity. With 
respect to the quantum theory alone, Penrose's objections to the GRW theory are clearly 
not decisive (once we see that being computable does not count against it), and his 
objections to Bohm's theory are impossible to decipher from the text. Reconciling any of 
these theories with Relativity does not look hopeful, but Penrose's own suggestion for a 
collapse theory does no better in this respect, despite the invocation of relativistic 
paraphernalia<2>. In particular, Penrose's proposal is couched in terms of a unique 
universal time function (cf. the "NOW" in figure 6.5 on p. 338), and so seems to 
presuppose a single preferred notion of simultaneity. Nothing in the proposal resolves the 
problem discussed on p. 295: different universal time functions will yield different 
accounts of how the collapses occur, at most one of which can be correct. How could one 
use the proposal to determine which side of the EPR experiment causes the first collapse, 
i.e. the collapse that causes the distant particle to go into a spin eigenstate? Different 
universal time functions will give different regions of space-time whose geometries are to 
be compared, and hence different predictions for collapse. If the collapses are real, then at 



most one such time function is correct, yielding an absolute simultaneity function which 
cannot be reconciled with the relativistic account to space-time structure. 

 
6.3 It is also notable that Penrose's collapse theory offers a stochastic collapse postulate. 
This is puzzling given the role that he suspects quantum computation to play in cognitive 
function. Recall the theorems which show that when a collapse occurs makes no 
difference (for all practical purposes!) once a quantum system has become sufficiently 
entangled with its environment. If this were true in the brain, then employing a 
computable collapse postulate (e.g. that of GRW) rather than Penrose's postulate would 
make no difference (for all practical purposes) in predicting the evolution of the brain 
state. Now the whole point of examining the physical structure of the cytoskeletons is to 
find a place in the brain where entanglement with the environment does not occur, and so 
where the exact timing of the collapses might make a noticeable difference to the 
evolution of the brain state. But if the collapses take place randomly, governed by a 
stochastic law, then the differences in brain state evolution that depend on the exact 
timing of the collapses will also be governed by a stochastic law: so mathematicians will 
disagree in their conclusions depending on just when the collapses in their brains occur. 
So in so far as the conclusions of mathematicians are sensitive to the timing of collapses 
they will disagree, and in so far as their conclusions do not depend on the exact timing of 
collapses, we can just as well use the GRW theory as Penrose's. If there is unanimity in 
the mathematical community, then (if we adopt a stochastic collapse theory) relevant 
evolution of brain state must be robust even under very different timings of the collapses, 
and so the exact timing of the collapses must be inconsequential. 

 
6.4 It certainly seems plausible that "a much more profound appreciation of the very 
nature of time, space, and the laws that govern them" will be needed just to get the 
motion of electrons right, leave aside explaining consciousness. And perhaps folding 
gravitational effects into the quantum theory will lead us in the right direction. But the 
collapse proposal in Shadows of the Mind does not seem to resolve the tension between 
Relativity and quantum theory, nor does it fit very well with Penrose's own project of 
tying the fundamental laws of physics to the remarkable cognitive capacities of human 
brains. 

Notes 
<1> GRW = Ghirardi-Rimini-Weber. See Penrose, pp. 331-4. 

 
<2> For a painfully extensive examination of this problem, see Maudlin (1994). 
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